Revista Chapingo Serie Ciencias Forestales y del Ambiente
Evaluating Aspergillus terreus tolerance to toxic metals
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

environmental pollution
lead
cadmium
filamentous fungi
minimum inhibitory concentration

How to Cite

Villalba-Villalba, A. G. (2021). Evaluating Aspergillus terreus tolerance to toxic metals. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(3), 449–464. https://doi.org/10.5154/r.rchscfa.2020.07.047

##article.highlights##

  • Aspergillus terreus was isolated from soil contaminated with toxic metals.
  • A. terreus showed high tolerance index to lead (0.9) and mercury (0.8).
  • Minimum inhibitory concentration with lead and mercury was greater than 500 ppm.
  • Cadmium was the most toxic with indexes of 0.56 and 0.2 at 50 ppm and 100 ppm, respectively.
  • The index was high (0.9) at 64 ppm for the multimetal system (cadmium, chromium, mercury and lead).

Abstract

Introduction: Metal pollution is one of the major environmental problems. Some metals are toxic at very low concentrations, bioaccumulate and do not decompose to non-toxic forms.
Objective: To isolate a strain of microscopic fungus in a site contaminated with toxic metals and to evaluate the tolerance to these substances.
Materials and methods: Fungi were isolated from the soil of an abandoned lead mine. Tolerance index of fungi to cadmium, mercury and lead was evaluated individually at concentrations of 50, 100, 250, 350 and 500 ppm; in addition, a multimetal system (mixture) with cadmium, chromium, mercury and lead was evaluated at 4, 8, 16, 64, 80, 120, 200 and 400 ppm. The minimum inhibitory concentration (MIC) was also determined.
Results and discussion: The isolated fungi were identified as Aspergillus terreus, which showed high tolerance indices for lead (0.9) at all concentrations tested and indices of 0.8 at most mercury concentrations. Cadmium was the most toxic metal; tolerance indices of 0.56 and 0.2 were observed at 50 ppm and 100 ppm, respectively. High tolerance indices (0.9) were observed in the multimetal system up to 64 ppm. MIC was greater than 500 ppm with lead and mercury, less than 250 ppm with cadmium and greater than 400 ppm with the multimetal system.
Conclusion: A. terreus showed high tolerance to lead at all concentrations tested. The level of tolerance is influenced by the type of metal.

https://doi.org/10.5154/r.rchscfa.2020.07.047
PDF

References

Agency for Toxic Substances and Disease Registry (ATSDR). (2019). Priority list of hazardous substances. Retrieved March 16, 2020, from http://www.atsdr. cdc.gov/SPL/index.html/

Atiqah, Z. N., & Zakaria, L. (2017). Morphological and molecular diversity of Aspergillus from corn grain used as livestock feed. HAYATI Journal of Bioscience, 24(1), 26‒34. doi: https://doi.org/10.1016/j.hjb.2017.05.002

Atlas, R. M., & Bartha, R. (2001). Ecología microbiana y microbiología ambiental (4.a ed.). España: Pearson.

Awasthi, K. A., Pandey, A. K., & Khan, J. (2017). A preliminary report of indigenous fungal isolates from contaminated municipal solid waste site in India. Environmental Science and Pollution Research, 24, 8880–8888. doi: https://doi.org/10.1007/s11356-017-8472-0

Bellion, M., Courbot, M., Jacob, C., Blaudez, D., & Chalot, M. (2006). Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiology Letters, 254(2), 173–181. doi: https://doi.org/10.1111/j.1574-6968.2005.00044.x

Bǔcková, M., Godočiková, J., Šimonovičová, A., & Polek, B. (2005). Production of catalases by Aspergillus niger isolates as a response to pollutant stress by heavy metals. Current Microbiology, 50, 175–179. doi: https://doi.org/10.1007/s00284-004-4458-5

Chakraborty, S., Mukherjee, A., & Das, T. K. (2013). Biochemical characterization of a lead-tolerant strain of Aspergillus foetidus: An implication of bioremediation of lead from liquid media. International Biodeterioration & Biodegradation, 84, 134–142. doi: https://doi.org/10.1016/j.ibiod.2012.05.031

Cordero, R. J., & Casadevall, A. (2017). Functions of fungal melanin beyond virulence. Fungal Biology Reviews, 31(2), 99–112. doi: https://doi.org/10.1016/j.fbr.2016.12.003

Desai, H., Patel, D., & Joshi, B. (2016). Screening and characterization of heavy metal resistant bacteria for its prospects in bioremediation of contaminated soil. International Journal of Current Microbiology and Applied Science, 5(4), 652–658. doi: https://doi.org/10.20546/ijcmas.2016.504.074

Dey, P., Gola, D., Mishra, A., Malik, A., Kumar, P., Kumar, S. D., … Jehmlich N. (2016). Comparative performance evaluation of multi-metal resistant fungal strains for simultaneous removal of multiple hazardous metals. Journal of Hazardous Materials, 318, 679–685. doi: https://doi.org/10.1016/j.jhazmat.2016.07.025

Dhankhar, R., & Hooda, A. (2011). Fungal biosorption an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467–491. doi: https://doi.org/10.1080/09593330.2011.572922

Dixit, R., Malaviya, D., Pandiyan, K., Singh, U., Sahu, A., Shukla, R., … Lade, H. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 7, 2189–2212. doi: https://doi.org/10.3390/su7022189

Ezzouhri, L., Castro, E., Moya, M., Espinola, F., & Lairini, K. (2009). Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. African Journal of Microbiology Research, 3(2), 35–48. doi: https://doi.org/10.5897/AJMR.9000354

Fazli, M., M., Soleimani, N., Mehrasbi, M., Darabian, S., Mohammadi, J., & Ramazani, A. (2015). Highly cadmium tolerant fungi: their tolerance and removal potential. Journal of Environmental Health Science & Engineering, 13, Article 19. doi: https://doi.org/10.1186/s40201-015-0176-0

Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. doi: https://doi.org/10.1016/j.jenvman.2010.11.011

Gadd, G. M. (1993). Interaction of fungi with toxic metals. New Phytologist, 124, 25–60. doi: https://doi.org/10.1111/j.1469-8137.1993.tb03796.x

Gadd, G. M. (2007). Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycology Research, 111(1), 3–49. doi: https://doi.org/10.1016/j.mycres.2006.12.001

Gola, D., Dey, P., Bhattacharya, A., Mishra, A., Malik, A., Namburath, M., & Ahammad, S. Z. (2016). Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresource Technology, 218, 388–396. doi: https://doi.org/10.1016/j.biortech.2016.06.096

Gorbushina, A. A., & Krumbein, W. E. (2000). Subaerial microbial mats and their effects on soil and rock. In R. E. Riding, & S. M. Awramik (Eds.), Microbial sediments (pp. 161–170). Berlin, Germany: Springer. doi: https://doi.org/10.1007/978-3-662-04036-218

Gube, M. (2016). Fungal molecular response to heavy metal stress. In K. Esser, & D. Hoffmeister (Eds.), Biochemistry and molecular biology. The mycota (A comprehensive treatise on fungi as experimental systems for basic and applied research) (pp. 47–68). Cham, Switzerland: Springer. doi: https://doi.org/10.1007/978-3-319-27790-54

Gunatilake, S. K. (2015). Methods of removing heavy metals from industrial wastewater. Journal of Multidisciplinary Engineering Science Studies, 1(1), 12–18. Retrieved from http://jmess.org/wp-content/uploads/2015/11/JMESSP13420004.pdf

Gupta, V. K., Nayak, A., & Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environmental Engineering Research, 20(1), 1–18. doi: https://doi.org/10.4491/eer.2014.018

Gururajan, K., & Belur, P. D. (2018). Screening and selection of indigenous metal tolerant fungal isolates for heavy metal removal. Environmental Technology & Innovation, 9, 91–99. doi: https://doi.org/10.1016/j.eti.2017.11.001

International Union of Soil Sciences (IUSS). (2015). World reference base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World soil resources reports No. 106. Italy: FAO. Retrieved from http://www.fao.org/3/i3794en/I3794en.pdf

Iram, S., Ahmad, I., Javed, B., Yaqoob, S., Akhtar, K., & Kazmi, M. R. (2009). Fungal tolerance to heavy metals. Pakistan Journal of Botany, 41(5), 2583–2594. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20103010443

Iskandar, N. L., Zainudin, N., & Tan, S. G. (2011). Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. Journal of Environmental Science, 23(5), 824–830. doi: https://doi.org/10.1016/S1001-0742(10)60475-5

Jiang, S., Wang, W., Xue, X., Cao, C., & Zhang, Y. (2016). Fungal diversity in major oil-shale mines in China. Journal of Environmental Science, 41, 81–89. doi: https://doi.org/10.1016/j.jes.2015.04.032

Joo, J-H., & Hussein, K. A. (2012). Heavy metal tolerance of fungi isolated from contaminated soil. Korean Journal of Soil Science and Fertilizer, 45(4), 565–571. doi: https://doi.org/10.7745/KJSSF.2012.45.4.565

Kabata-Pendias, A. (2010). Trace elements in soils and plants (4.a ed.). Boca Raton, USA: CRC Press.

Kermasha, S., Pellerin, F., Rovel, B., Goetghebeur, M., & Metche, M. (1993). Purification and characterization of copper-metallothioneins from Aspergillus niger. Bioscience, Biotechnology and Biochemistry, 57(9), 1420–1423. doi: https://doi.org/10.1271/bbb.57.1420

Khan, I., Aftab, M., Shakir, S., Ali, M., Qayyum, S., Ur Rehman, M., … Touseef, I. (2019). Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates. Environmental Monitoring Assessment, 191, Article 585. doi: https://doi.org/10.1007/s10661-019-7769-5

Klich, M. A. (2002). Identification of common Aspergillus species. Utrecht, Países Bajos: Centraalbureau voor Schimmelcultures.

Kurniati, E., Arfarita, N., & Imai, T. (2014). Potential use of Aspergillus flavus strain KRP1 in utilization of mercury contaminant. Procedia Environmental Science, 20, 254–260. doi: https://doi.org/10.1016/j.proenv.2014.03.032

Maini, Z. A. N., Aribal, K. M. J., Narag, R. M., Melad, J. L., Frejas, J. A. D., Arriola, L. A. M., …Lopez, C. M. (2019). Lead (II) tolerance and uptake capacities of fungi isolated from a polluted tributary in the Philippines. Applied Environmental Biotechnology, 4(1), 18–29. doi: https://doi.org/10.26789/AEB.2019.01.004

Malofe, T. C., Solhaug, K. A., Minibayera, F. V., & Beckett, R. P. (2019). Occurrence and possible roles of melanic pigments in lichenized ascomycetes. Fungal Biology Reviews, 33(3-4), 159–165. doi: https://doi.org/10.1016/j.fbr.2018.10.002

Meng, J., Wang, W., Li, L., Yin, Q., & Zhang, G. (2017). Cadmium effects on DNA and protein metabolism in oyster (Crassostrea gigas) revealed by proteomic analyses. Scientific Report, 7, Article 11716. doi: https://doi.org/10.1038/s41598-017-11894-7

Mishra, A., & Malik, A. (2012). Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus. Water Research, 46(16), 4991–4998. doi: https://doi.org/10.1016/j.watres.2012.06.035

Mohammadian, E., Ahari, A. B., Arzanlou, M., Oustan, S., & Khazaei, S. H. (2017). Tolerance to heavy metals in filamentous fungi isolated from contaminated mining soils in the Zanjan Province, Iran. Chemosphere, 185, 290–296. doi: https://doi.org/10.1016/j.chemosphere.2017.07.022

Mungasavalli, D. P., Viraraghavan, T., & Jin, Y.-C. (2007). Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: batch and column studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1-3), 214–223. doi: https://doi.org/10.1016/j.colsurfa.2006.12.060

Nosanchuk, J. D., & Casadevall, A. (2003b). The contribution of melanin to microbial pathogenesis. Cellular Microbiology, 5(4), 203–223. doi: https://doi.org/10.1046/j.1462-5814.2003. 00268.x

Oladipo, O. G., Awotoye, O. O., Olayinka, A., Bezuidenhout, C. C., & Maboeta, M. S. (2018). Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian Journal of Microbiology, 49(1), 29–37. doi: https://doi.org/10.1016/j.bjm.2017.06.003

Pumpel, T., & Paknikar, K. (2001). Bioremediation technologies for wastewaters using metabolically active microorganisms. Advances in Applied Microbiology, 48, 134–169. doi: https://doi.org/10.1016/s0065-2164(01)48002-6

Ranzoni, F. V. (1968). Fungi isolated in culture from soils of the Sonoran Desert. Mycologia, 60(2), 356–371. doi: https://doi.org/10.2307/3757166

Rose, P. K., & Devi, R. (2018). Heavy metal tolerance and adaptability assessment of indigenous filamentous fungi isolated from industrial wastewater and sludge samples. Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 688–694. doi: https://doi.org/10.1016/j.bjbas.2018.08.001

Sanyal, A., Rautaray, D., Bansal, V., Ahmad, A., & Sastry, M. (2005). Heavy-metal remediation by a fungus as a means of production of lead and cadmium carbonate crystals. Langmuir, 21(16), 7220–7224. doi: https://doi.org/10.1021/la047132g

Say, R., Yilmaz, N., & Denizli, A. (2003). Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum. Separation Science and Technology, 38(9), 2039–2053. doi: https://doi.org/10.1081/SS-120020133

Sevim, Ç., Dogana, E., & Comakli, S. (2020). Cardiovascular disease and toxic metals. Current Opinion in Toxicology, 19, 88–92. doi: https://doi.org/10.1016/j.cotox.2020.01.004

Srivastava, S., & Thakur, I. S. (2006). Biosorption potency of Aspergillus niger for removal of chromium (VI). Current Microbiology, 53, 232–237. doi: https://doi.org/10.1007/s00284-006-0103-9

Tariba, L. B. (2020). Cadmium, arsenic, and lead: elements affecting male reproductive health. Current Opinion in Toxicology, 19, 7–14. doi: https://doi.org/10.1016/j.cotox.2019.09.005

Thippeswamy, B., Shivakumar, C., & Krishnappa, M. (2014). Studies on heavy metals detoxification biomarkers in fungal consortia. Caribbean Journal of Science and Technology, 2, 496–502. Retrieved from http://www.caribjscitech.com/article/studies-heavy-metals-detoxification-biomarkers-fungal-consortia

Valix, M., Tang, J. Y., & Malik, R. (2001). Heavy metal tolerance of fungi. Minerals Engineering, 14(5), 499–505. doi: https://doi.org/10.1016/S0892-6875(01)00037-1

Villalba-Villalba, A. G., Cruz-Campas, M. E., & Azuara-Gómez, G. V. (2018). Aspergillus niger Tiegh isolated in Sonora, Mexico: metal tolerance evaluation. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 24(2), 131–146. doi: https://doi.org/10.5154/r.rchscfa.2017.03.023

VSN International. (2019). GenStat for Windows 20 th Edition. Hemel Hempstead, UK: Author.

Yazdani, M., Yap, C. K., Abdullah, F., & Tan, S. G. (2010). An in vitro study on the adsorption, absorption and uptake capacity of Zn by the bioremediator Trichoderma atroviride. Environment Asia, 3(1), 53–59. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20103182204

Zafar, S., Aqil, F., & Ahmad, I. (2007). Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology, 98(13), 2557–2561. doi: https://doi.org/10.1016/j.biortech.2006.09.051

Zolfaghari, G. (2018). Risk assessment of mercury and lead in fish species from Iranian international wetlands. MethodsX, 5, 438–447. doi: https://doi.org/10.1016/j.mex.2018.05.002

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Revista Chapingo Serie Ciencias Forestales y del Ambiente