Revista Chapingo Serie Ciencias Forestales y del Ambiente
Factors influencing physical dormancy and its elimination in two legumes genus
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Vachellia
Prosopis
mechanical scarification
chemical scarification
thermal scarification

How to Cite

Illescas-Gallegos, E., Rodríguez-Trejo, D. A., Villanueva-Morales, A., Borja-de La Rosa, M. A., Ordóñez-Candelaria, V. R., & Ortega-Aragón, L. A. (2021). Factors influencing physical dormancy and its elimination in two legumes genus. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(3), 413–429. https://doi.org/10.5154/r.rchscfa.2020.06.041

##article.highlights##

  • Chemical, mechanical and thermal scarification were evaluated on Vachellia and Prosopis species.
  • Mechanical treatment (sanding) was the most efficient in breaking physical dormancy.
  • It required 341 to 669 N of pressure to fracture the seed coat and concluding dormancy.
  • Dormancy was more intense in Vachellia than in Prosopis.

Abstract

Introduction: Prosopis laevigata (Humb. & Bonpl. ex Willd.) M. C. Johnst, P. glandulosa Torr., Vachellia schaffneri (S. Watson) Seigler & Eibinger, V. pennatula (S. Watson) Seigler & Eibinger and V. farnesiana (L.) Wight & Arn. are characteristic species of semi-arid areas. Their seeds show physical dormancy and are naturally scarified by chewing, trampling, digestive tract of fauna, fire, or washing away during rains.
Objective: To describe the morphology of the seed coat of three species of Vachellia and two of Prosopis, and to assess the chemical, mechanical and thermal scarification of seeds.
Materials and methods: Chemical (HCl for 30, 120, 150 and 180 min), thermal (80, 100, 120 and 140 °C for 3 min) and mechanical (sanding) scarification were applied. Resistance to breaking by compression was measured. The experimental design was randomized complete blocks per species.
Results and discussion: Seeds showed a layer of lignified and impermeable macrosclereids, but the aleurone layer could not be detected. Sanding allowed germination from 81.2 to 100 %. Chemical and thermal treatments showed no differences, only in the case of P. laevigata, chemical scarification for 180 min caused higher germination (72.5 %) compared to the control. Vachellia schaffneri seeds were more resistant to compression (669 N) and had more intense dormancy (0.83, according to a proposed dormancy index), while P. glandulosa had the lowest dormancy (0.42).
Conclusions: Mechanical scarification was the best method to eliminate dormancy in Vachellia and Prosopis seeds.

https://doi.org/10.5154/r.rchscfa.2020.06.041
PDF

References

Alberta Government. (2016). Alberta seed testing standards. Alberta, Canada: Government of Alberta.

Baskin, C. C., & Baskin, J. M. (2014). Seeds (2nd. ed.). San Diego, USA: Academic Press.

Beltramini, V. S., & Pascualides, A. L. (2017). Effect of seed coat color on imbibition, germination and seed structure of Crotalaria juncea (Fabaceae). Lilloa, 54(2), 101−109. Retrieved from http://lillo.org.ar/revis/lilloa/2017/v54n2/lilloa-v54n2a02.pdf

Campos-Dayrell, R. L., Goncalves-Alvym, S. de J., Negreiros, D., Fernandes, G. W., & Oliveira-Silveira, F. A. (2015). Environmental control of seed dormancy and germination of Mimosa calodendron (Fabaceae): implications for ecological restoration of a highly threatened environment. Brazilian Journal of Botany, 38, 395−399. doi: https://doi.org/10.1007/s40415-015-0145-y

Capparelli, A. (2008). Caracterización cuantitativa de productos intermedios y residuos derivados de alimentos del algarrobo (Prosopis flexuosa y P. chilensis, Fabaceae): aproximación experimental aplicada a restos arqueobotánicos desecados. Darwiniana, 46(2), 175−201. doi: https://doi.org/10.14522/darwiniana.2014.462.282

D'Aubeterre, R., Principal, J., & García, J. (2002). Efecto de diferentes métodos de escarificación sobre la germinación de tres especies del género Prosopis. Revista Científica, 12(2), 575−577. Retrieved from http://produccioncientificaluz.org/index.php/cientifica/article/view/14933

El-Azazi, E. S., Sourour, M. M., Belal, A. H., & Khalifa, E. A. (2013). Improving Acacia tortilis seeds germination by breaking dormancy treatments. International Journal of Advanced Biological Research, 3(1), 103−109. Retrieved from http://connection.ebscohost.com/c/articles/86893786/improving-acacia-tortilis-seeds-germination-by-breaking-dormancy-treatments

Ffolliott, P. F., & Thames, J. L. (1983). Recolección, manipuleo, almacenaje y pretratamiento de las semillas de Prosopis en América Latina. Roma: FAO.

Fidelis, A., Daibes, L. F., & Redondo-Martines, A. (2015). To resist or to germinate? The effect of fire on legume seeds in Brazilian subtropical grasslands. Acta Botanica Brasilica, 30(1), 147‒151. doi: https://doi.org/10.1590/0102-33062015abb0187

Fontana, M. L., Pérez, V. R., & Luna, C. V. (2015). Influencia de la procedencia geográfica sobre los parámetros morfométricos de semillas de Prosopis alba. Multequina, 24, 33−45. Retrieved from https://ri.conicet.gov.ar/handle/11336/7688

Ghassali, F., Salkini, A. K., Petersen, S. L., Niane, A. A., & Louhaichi, M. (2012). Germination dynamics of Acacia species under different seed treatments. Range Management & Agroforestry, 33(1), 37−42. Retrieved from https://www.researchgate.net/publication/265167382_Germination_dynamics_of_Acacia_species_under_different_seed_treatments

Godínez-Álvarez, H., & Flores-Martínez, A. (2000). Germinación de 32 especies de plantas de la costa de Guerrero: Su utilidad para la restauración ecológica. Polibotánica, 11, 1−29. Retrieved from http://www.polibotanica.mx/pdf/pb11/germinacionsemillas.pdf

Hudson, A. R., Ayre, D. J., & Ooi, M. K. J. (2015). Physical dormancy in a changing climate. Seed Science Research, 25(2), 66−81. doi: https://doi.org/10.1017/S0960258514000403

Instron (2006). Instron BlueHill® referencia de cálculos. Manual de referencia de software. Revisión A (versión 2.3) (software de cómputo). Norwood, Massachusetts, Estados Unidos: Instron Corporation.

Jaganathan, G. K. (2016). Influence of maternal environment in developing different levels of physical dormancy and its ecological significance. Plant Ecology, 217, 71−79. doi: https://doi.org/10.1007/s11258-015-0560-y

Jaganathan, G. K., Yule, K., & Liu, B. (2016). On the evolutionary and ecological value of breaking physical dormancy by endozoochory. Perspectives in Plant Ecology, Evolution and Systematics, 22, 11−22. doi: https://doi.org/10.1016/j.ppees.2016.07.001

Kneuper, C. L., Scott, C. B., & Pinchak, W. E. (2018). Consumption and dispersion of mesquite seeds by ruminants. Range Management, 56(3), 255−259. doi: https://doi.org/10.2458/azu_jrm_v56i3_kneuper

Kulkarni, M. G., Sparg, S. G., & Van Staden, J. (2007). Germination and post-germination response of Acacia seeds to smoke-water and butenolide, a smoke derived compound. Journal of Arid Environments, 69(1), 177‒187. doi: https://doi.org/10.1016/j.jaridenv.2006.09.001

Lazarević, J. M., Zorić, L., Karagć, Ð., Miloević, B., Karanović, D., Milić, D., … Luković, J. (2017). Anatomical and micromorphological characteristics of the seed coat of field pea (Pisum sativum L.) genotypes in relation to cracks and damage of seeds. Archives of Biological Sciences, 69(3), 503‒512. doi: https://doi.org/10.2298/ABS160612126L

Liyanage, G. S., & Ooi, M. K. J. (2015). Intra-population level variation in thresholds for physical dormancy-breaking temperature. Annals of Botany, 116(1), 123−131. doi: https://doi.org/10.1093/aob/mcv069

Maldonado-Arciniegas, F., Ruales, C., Caviedes, M., Ramírez X. D., & León-Reyes, A. (2018). An evaluation of physical and mechanical scarification methods on seed germination of Vachellia macracantha (Humb. & Bonpl. ex Willd.) Seigler & Ebinger. Acta Agronómica, 67(1), 120−125. doi: https://doi.org/10.1S446/acag.v67n1.60696

Martínez-Pérez, G., Orozco-Segovia, A., & Martorell, C. (2006). Efectividad de algunos tratamientos pre-germinativos para ocho especies leñosas de la Mixteca Alta oaxaqueña con caracteristicas relevantes para la restauración. Boletín de la Sociedad Botánica de México, 79, 9−20. Retrieved from https://www.redalyc.org/pdf/577/Resumenes/Resumen_57707902_1.pdf

Martínez-Rodríguez, O. A., Rivera-Maya, J., & Santamaría-César, E. (2000). Evaluación de 25 tratamientos pregerminativos en semillas de mezquite (Prosopis velutina Wooton) en área de influencia de la URUZA. Revista Chapingo Serie Zonas Áridas, 1(2), 93‒99. Retrieved from https://docplayer.es/63104387-Evaluacion-de-25-tratamientos-pregerminativos-en-semillas-de-mezquite-prosopis-velutina-wooton-en-area-de-influencia-de-la-uruza.html

Minchala-Patiño, J., Poma-Angamarca, R., Muñóz-Chamba, L., Yaguana-Arévalo, M., González-Zaruma, D., Eras-Guamán, V. H., …Delgado-Paredes, G. E. (2014). Propagación in vitro de Prosopis limensis Benth. in Hook. (Fabaceae-Mimosoideae). Quebracho-Revista de Ciencias Forestales, 22(1−2), 88−99. Retrieved from https://www.redalyc.org/pdf/481/48133884010.pdf

Miranda, R. Q., Oliveira, M. T., Correia, R. M., Almeida-Cortez, J. S., & Pompelli, M. F. (2011). Germination of Prosopis juliflora (Sw) DC seeds after scarification treatments. Plant Species Biology, 26(2), 186−192. doi: https://doi.org/10.1111/j.1442-1984.2011.00324.x

Niembro, R. A. (1988). Semillas de árboles y arbustos: Ontogenia y estructura. México: Limusa.

Odum, E. P., & Barrett, G. W. (2008). Fundamentos de ecología. México: CENGAGE Learning.

Penfield, S. (2017). Seed dormancy and germination. Current Biology Magazine, 27(17), 874−878. doi: https://doi.org/10.1016/j.cub.2017.05.050

Robles-Diaz, E., Flores J., & Yañez-Espinosa, L. (2016). Paths of water entry and structures involved in the breaking of seed dormancy of Lupinus. Journal of Plant Physiology, 192, 75−80. doi: https://doi.org/10.1016/j.jplph.2016.01.005

Rodríguez-Carias, A. A., & Valencia-Chin, E. (2007). El estómago del pequeño rumiante. Ruminantia, 3(2), 1−4. Retrieved from http://agricultura.uprm.edu/inpe/ruminantia/ruminantia3-2-2007.pdf

Rzedowski, J. (2006). Vegetación de México (1.a ed. digital). México: Limusa.

Sabiiti, E. N., & Wein, R. W. (1987). Fire and Acacia seeds : A hypothesis of colonization success. Journal of Ecology, 74, 937−946. Retrieved from https://www.jstor.org/stable/2260305?seq=1

Sánchez, J., Estrada-Castillón, E., Arias-Montes, S., Muro-Pérez, G., García-Aranda, M., & García-Morales, L. J. (2014). Diversidad cactoflorística de la zona árida y semiárida de Durango, México. Interciencia, 39(11), 794‒802. Retrieved from https://www.interciencia.net/wp-content/uploads/2017/11/794-MURO-.pdf

Sánchez-Soto, B. H., Pacheco-Aispuro, E., Reyes-Olivas, Á., Lugo-García, G. A., Casillas-Álvarez, P., & Sauceda-Acosta, C. P. (2016). Ruptura de latencia física en semillas de Caesalpinia platyloba S. Watson. Interciencia, 41(10), 691‒695. Retrieved from https://www.interciencia.net/wp-content/uploads/2017/10/691-BARDO-41-10.pdf

Sato, K., Jitsuyama, Y., Yamada, T., Liu, B., & Abe, J. (2019). Structural features of the aleurone layer of the seed coat associated with imbibition injury in soybean. Breeding Science, 69(2), 364−370. doi: https://doi.org/10.1270/jsbbs.18181

Shao, S., Meyer, C. J., Ma, F., Peterson, C. A., & Bernards, M. A. (2007). The outermost cuticle of soybean seeds: chemical composition and function during imbibition. Journal of Experimental Botany, 58(5), 1071−1082. doi: https://doi.org/10.1093/jxb/erl268

Schiltmeyer, A. V., & Zouhar, K. (2020). Vachellia farnesiana, huisache. Fire effects information system. Retrieved from https://www.fs.fed.us/database/feis/plants/shrub/vacfar/all.pdf

Scott, A. C., Bowman, D. M. J. S., Bond, W. J., Pyne, S. J., & Alexander, M. E. (2014). Fire on earth. An introduction. Chichester: Wiley Blackwell.

Sorrivas de L., V., Morales, A., & Yañez, M. J. (2014). Principios y práctica de la microscopía electrónica. Buenos Aires, Argentina: UAT, CONICET, Bahía Blanca.

Statistical Analysis System Inc. (SAS). (2015). SAS® 9.4. in database products: User’s guide (6th ed.). Cary, NC, USA: Author.

Steinberg, P. (2001). Prosopis glandulosa. Fire effects information system. Retrieved July 9, 2021, from https://www.fs.fed.us/database/feis/plants/tree/progla/all.html

Steinbrecher, T., & Leubner-Metzger, G. (2018). Tissue and cellular mechanics of seeds. Current Opinion in Genetics & Development, 51, 1−10. doi: https://doi.org/10.1016/j.gde.2018.03.001

Uchytil, R. J. (1990). Prosopis velutina. Fire effects information system. Retrieved July 9, 2021, from https://www.fs.fed.us/database/feis/plants/tree/provel/all.html

Velez, S. (2014). Interacciones entre Prosopis, insectos y mamíferos: implicancias en la depredación y supervivencia de las semillas. Mastozoología Neotropical, 21(2), 386−388. Retrieved from https://www.sarem.org.ar/wp-content/uploads/2014/12/SAREM_MastNeotrop_21-2_21_RTesis.pdf

Zalamea, P. C., Sarmiento, C., Arnold, A. E., Davis, A. S., & Dalling, J. W. (2015). Do soil microbes and abrasion by soil particles influence persistence and loss of physical dormancy in seeds of tropical pioneers? Frontiers in Plant Science, 5, 1−14. doi: https://doi.org/10.3389/fpls.2014.00799

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Revista Chapingo Serie Ciencias Forestales y del Ambiente