Revista Chapingo Serie Ciencias Forestales y del Ambiente
Impact of external and internal factors on successful grafting of Pinus pseudostrobus var. oaxacana (Mirov) Harrison
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

survival
shoot growth
grafting period
side-veneers grafting
bud origin

How to Cite

Barrera-Ramírez, R., Vargas-Hernández, J. J., López-Aguillón, R., Muñoz-Flores, H. J., Treviño-Garza, E. J., & Aguirre-Calderón, O. A. (2021). Impact of external and internal factors on successful grafting of Pinus pseudostrobus var. oaxacana (Mirov) Harrison. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(2), 243–256. https://doi.org/10.5154/r.rchscfa.2020.05.037

##article.highlights##

  • Time, method, and bud origin influenced grafting success on P. pseudostrobus.
  • Rootstock fertilization had no significant influence on grafting success.
  • Bud outbreak and shoot growth were visualized 45 days after grafting.
  • Side-veneer grafts were more successfully compared to the terminal tip/insertion.
  • Successful grafting, growth, and survival were higher for grafting in winter.

Abstract

Introduction: Grafting allows full multiplication of phenotypic and genotypic characteristics of genetically improved trees.
Objective: To determine the influence of bud origin, rootstock fertilization, grafting period and grafting techniques on the success of grafting, growth, and survival of intraspecific grafts in Pinus pseudostrobus var. oaxacana (Mirov) Harrison.
Materials and methods: The effect of four factors was evaluated ([a] two bud sources, [b] three rootstock fertilization doses, [c] three grafting seasons and [d] two grafting techniques) on the success of grafting, shoot growth (Sg) and survival. An analysis of variance was carried out to determine the effect of factors a, b, c, and d on successful grafting and Sg, and a Log-Rank test was carried out for survival analysis.
Results and discussion: Significant differences (P ≤ 0.05) were obtained for factors a,c and d. Grafting during winter (December 2018 and February 2019) using the side-veneer grafts technique and buds coming from Santa Catarina Ixtepeji showed the highest values of successful grafting (≥25.5 %), Sg (≥14.5 cm) and survival (≥20.5 %). Final survival decreased from 100 to 27 % 90 days after grafting.
Conclusions: Grafting period, bud origin, and grafting technique, individually or interacting with, are determinant factors for the success of intraspecific grafting on P. pseudostrobus var. oaxacana.

https://doi.org/10.5154/r.rchscfa.2020.05.037
PDF

References

Almqvist, C. (2013). Interstock effects on topgraft vitality and strobili production after topgrafting in Pinus sylvestris. Canadian Journal of Forest Research, 43(6), 584‒588. doi: https://doi.org/10.1139/cjfr-2012-0507

Barbosa, G. M. G., Alpízar, S., & Fiscal, V. (1984). Pruebas de injertado en Pinus pseudostrobus var. oaxacana Mtz. en los altos de Chiapas. México: Secretaría Forestal- Instituto Nacional de Investigaciones Forestales.

Castro-Garibay, S. L., Villegas-Monter, A., & López-Upton, J. (2017). Anatomy of rootstocks and scions in four pine species. Forest Research, 6(3), 1–6. doi: https://doi.org/10.4172/2168-9776.1000211

Comisión Nacional Forestal (CONAFOR). (2017). Pinus pseudostrobus Lindl. var. pseudostrobus. SIRE Paquetes Tecnológicos. CONAFOR-CONABIO. Retrieved from http://www.conafor.gob.mx:8080/documentos/docs/13/981Pinus%20pseudostrobus.pdf

Comisión Nacional Forestal (CONAFOR). (2019). Manual para el establecimiento de unidades productoras de germoplasma forestal. Retrieved from https://backend.aprende.sep.gob.mx/media/uploads/proedit/resources/manual_para_el_estab_12bce8a9.pdf

Cuevas, C. J. C., Jiménez, C. M., Jasso, M. J., Pérez, R. P., López, U. J., & Villegas, M. Á. (2015). Propagación asexual de Pinus leiophylla Schiede ex Schltdl. et Cham. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 21(1), 81‒95. doi: https://doi.org/10.5154/r.rchscfa.2014.08.033

Darikova, Y. A., Vaganov, E. A., Kuznetsova, G. V., & Grachev, A. M. (2013). Changes in the anatomical structure of tree rings of the rootstock and scion in the heterografts of Siberian pine. Trees, 27(6), 1621‒1631. doi: https://doi.org/10.1007/s00468-013-0909-6

Farjon, A. (2008). A natural history of conifers. London, UK: Timber Press.

Flores, L. C., López, U. J., & Valencia, M. S. (2017). Manual técnico para el establecimiento de ensayos de procedencias y progenies. Retrieved from http://www.conafor.gob.mx:8080/documentos/docs/19/0Manual%20Te%CC%81cnico%20para%20el%20Establecimiento%20de%20Ensayos.pdf

Flores, A., López-Upton, J., Rullán-Silva, C. D., Olthoff, A. E., Alía, R., Sáenz-Romero, C., & García del Barrio, J. M. (2019). Priorities for conservation and sustainable use of forest genetic resources in four Mexican pines. Forests, 10(8), 675. doi: https://doi.org/10.3390/f10080675

Frey, H. H., Frampton, J., Blazich, F. A., & Hinesley, L. E. (2010). Grafting fraser fir (Abies fraseri): effect of grafting date, shade and irrigation. HortScience, 45(4), 617–620. doi: https://doi.org/10.21273/HORTSCI.45.4.617

Frey, H. H., Frampton, J., Blazich, F. A., Hundley, D., & Hinesley, L. E. (2011). Grafting fraser fir (Abies fraseri): effect of scion origin (crown position and branch order). HortScience, 46(1), 91–94. doi: https://doi.org/10.21273/HORTSCI.46.1.91

Gaspar, R. G. B., Wendling, I., Stuepp, C. A., & Angelo, A. C. (2017). Rootstock age and growth habit influence top grafting in Araucaria angustifolia. CERNE, 23(4), 465‒471. doi: https://doi.org/10.1590/01047760201723042447

Gernandt, D. S., & Pérez-de la Rosa, J. A. (2014). Biodiversity of Pinophyta (conifers) in Mexico. Revista Mexicana de Biodiversidad, 85(S126-S133), 123–133. doi: https://doi.org/10.7550/rmb.3219

Goldschmidt, E. (2014). Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science, 5, 1‒9. doi: https://doi.org/10.3389/fpls.2014.00727

Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53(282), 457‒481.

Kita, K., Kon, H., Ishizuka, W., Agathokleous, E., & Kuromaru, M. (2018). Survival rate and shoot growth of grafted Dahurian larch (Larix gmelinii var. japonica): a comparison between Japanese larch (L. kaempferi) and F1hybrid larch (L. gmelinii var. japonica× L. kaempferi) rootstocks. Silvae Genetica, 67(1), 111‒116. doi: https://doi.org/10.2478/sg-2018-0016

Koepke, T., & Dhingra, A. (2013). Rootstock scion somatogenetic interactions in perennial composite plants. Plant Cell Reports, 32, 1321–1327. doi: https://doi.org/10.1007/s00299-013-1471-9

Martínez-Ballesta, M. C., Alcaraz-López, C., Muries, B., Mota-Cadenas, C., & Carvajal, M. (2010). Physiological aspects of rootstock scion interactions. Scientia Horticulturae, 127(2), 112–118. doi: https://doi.org/10.1016/j.scienta.2010.08.002

Muñoz, F. H. J., Prieto, R. J. Á., Flores, G. A., Pineda, O. T., & Morales, G. E. (2013). Técnicas de injertado "enchapado lateral" y "fisura terminal" en Pinus pseudostrobus Lindl. México: INIFAP.

Oliveira, K. F., Nogueira, A. C., & Higa, A. R. (2018). Productivity of cones and seeds in a clonal orchard of Pinus taeda Linnaeus. Advances in Forestry Science, 5(2), 293‒298. Retrieved from http: //periodicoscientificos.ufmt.br / ...

Opoku, E. M., Opuni-Frimpong, E., & Dompreh, D. (2019). Developing sustainable regeneration techniques for four African mahogany species: grafting methods for success and growth. New Forests, 50(4), 539‒554. doi: https://doi.org/10.1007/s11056-018-9677-x

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2019). Boletín de noticias: La producción mundial de productos madereros registra el mayor aumento de los últimos 70 años. Retrieved from http://www.fao.org/news/story/es/item/1256292/icode/

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2018). El estado de los bosques del mundo-Las vías forestales hacia el desarrollo sostenible. Roma: Author. Retrieved from http://www.fao.org/3/I9535ES/i9535es.pdf

Pérez-Luna, A., Prieto-Ruíz, J. Á., López-Upton, J., Carrillo-Parra, A., Wehenkel, C., Chávez-Simental, J. A., & Hernández-Díaz, J. C. (2019). Some factors involved in the success of side veneer grafting of Pinus engelmannii Carr. Forests, 10(2), 112. doi: https://doi.org/10.3390/f10020112

Pérez-Luna, A., Wehenkel, C., Prieto-Ruíz, J. Á., López-Upton, J., & Hernández-Díaz, J. C. (2020). Survival of side grafts with scions from pure species Pinus engelmannii Carr. and the P. engelmannii× P. arizonica Engelm. var. arizonica hybrid. PeerJ, 8, e8468. doi: https://doi.org/10.7717/peerj.8468

Ranjith, K., & Ilango, J. V. (2017). Impact of grafting methods, scion materials and number of scions on graft success, vigour and flowering of top worked plants in tea (Camellia spp.). Scientia Horticulturae, 220, 139‒146. doi: https://doi.org/10.1016/j.scienta.2017.03.039

Reig, G., Zarrouk, O., Forcada, C. F., & Moreno, M. Á. (2018). Anatomical graft compatibility study between apricot cultivars and different plum based rootstocks. Scientia Horticulturae, 237, 67‒73. doi: https://doi.org/10.1016/j.scienta.2018.03.035

Sevik, H., & Topacoglu, O. (2015). Variation and inheritance pattern in cone and seed characteristics of Scots pine (Pinus sylvestris L.) for evaluation of genetic diversity. Journal of Environmental Biology, 36(5), 1125‒1130. https://www.researchgate.net/publication/282943568_Variation_and_inheritance_pattern_in_cone_and_seed_characteristics_of_Scots_pine_Pinus_sylvestris_L_for_evaluation_of_genetic_diversity

StatSoft Inc. (2000). STATISTICA software, kernel release version 13. Tulsa, Oklahoma, USA: Author.

Stewart, J. F., Will, R., Crane, B. S., & Nelson, C. D. (2016). Occurrence of shortleaf × loblolly pine hybrids in shortleaf pine orchards: Implications for ecosystem restoration. Forest Science, 63(2), 225‒231. doi: https://doi.org/10.5849/forsci.15-167

Świerczyński, S., Kolasiński, M., Urbaniak, M., Stachowiak, A., & Nowaczyk, N. (2018). Influence of rootstock and grafting date on the success and grafts growth of two cultivars of pines. Horticulture, 21(4), 6. doi: https://doi.org/10.30825/5.EJPAU.165.2018.21.4

Vargas-Hernandez, J. J., & Vargas-Abonce, J. I. (2016). Effect of giberellic acid (GA4/7) and girdling on induction of reproductive structures in Pinus patula. Forest Systems, 25(2), e063. doi: https://doi.org/10.5424/fs/2016252-09254

Vargas-Hernández, J. J., Bermejo-Velázquez, B., & Ledig, F. T. (2004). Manejo de recursos genéticos forestales (2.a ed.). México: Colegio de Postgraduados-Comisión Nacional Forestal.

Viveros-Viveros, H., & Vargas-Hernández, J. J. (2007). Dormancia en yemas de especies forestales. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 13(2), 131‒135. Retrieved from https://revistas.chapingo.mx/forestales/?section=articles&subsec=issues&numero=36&articulo=478

Wang, Y. Q. (2011). Plant grafting and its application in biological research. Chinese Science Bulletin, 56, 3511–3517. doi: https://doi.org/10.1007/s11434-011-4816-1

Yin, H., Yan, B., Sun, J., Jia, P., Zhang, Z., Yan, X., ...Liu, H. (2012). Graft-union development: a delicate process that involves cell–cell communication between scion and stock for local auxin accumulation. Journal of Experimental Botany, 63(11), 4219‒4232. doi: https://doi.org/10.1093/jxb/ers109

Zobel, B. J., & Talbert, J. T. (1988). Técnicas de mejoramiento genético de árboles forestales. México: Limusa.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Revista Chapingo Serie Ciencias Forestales y del Ambiente