Revista Chapingo Serie Ciencias Forestales y del Ambiente
Isolated rhizobacteria of Jatropha curcas L.: antagonistic activity of phytopathogens and plant growth promoter
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Bacillus mojavensis
Bacillus subtilis
Bacillus thuringiensis
Pseudomonas aeruginosa
Curvularia lunata
Fusarium equiseti

How to Cite

Toledo-Hernández, E., Peña-Chora, G., Toribio-Jiménez, J., Romero-Ramírez, Y., Bolaños-Dircio, A., Velázquez-del Valle, M. G. ., … Vero, S. (2021). Isolated rhizobacteria of Jatropha curcas L.: antagonistic activity of phytopathogens and plant growth promoter. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(2), 181–198. https://doi.org/10.5154/r.rchscfa.2020.04.029

##article.highlights##

  • The Bacillus genus was the most representative isolated in the rhizosphere of Jatropha curcas.
  • Eight rhizobacteria showed antagonistic activity against Curvularia lunata and Fusarium equiseti.
  • The antifungal effect (30 to 79 % inhibition) was due to volatile and diffusible compounds.
  • First report of bacteria isolated from J. curcas to improve the germination and growth in tomato plants.

Abstract

Introduction: Jatropha curcas L. is a species native to Mexico that has recently been considered an important crop to produce biofuel. 
Objective: To isolate and identify rhizobacteria from J. curcas with antagonistic activity against phytopathogenic fungi (Curvularia lunata and Fusarium equiseti) of this crop and evaluate their capacity to promote tomato plant growth. 
Materials and methods: The isolates were obtained by serial dilution and antagonistic activity was assessed by volatile and diffusible compounds on PDA medium. In addition, the production of antifungal compounds and metabolites that promote the plant growth were determined. The isolates were identified by amplifying the 16S RNA and sodA genes. Finally, the isolates were inoculated on tomato seeds to evaluated plant growth promotion and germination. 
Results and discussion: The antagonistic bacteria were identified as Bacillus mojavensis, Bacillus subtilis, Bacillus thuringiensis, and Pseudomonas aeruginosa. The antifungal effect on the mycelial growth of C. lunata and F. equiseti was due to the presence of volatile and diffusible compounds with between 30 % and 79 % inhibition. Pseudomonas aeruginosa showed the strongest inhibitory effect (48.7 to 79.8 %). Bacillus subtilis (A1), B. mojavensis (A4) and B. thuringiensis (A6, A8) showed the highest germination (70 % to 88 %). The vegetative growth of tomato plants treated with the isolates was significantly higher than the controls (P < 0.05). 
Conclusion: Eight rhizobacteria isolated from J. curcas showed antagonistic activity against C. lunata and F. equiseti and demonstrated their capacity to improve the germination and promote growth in tomato plants.

https://doi.org/10.5154/r.rchscfa.2020.04.029
PDF

References

Abo-Elyousr, K. A. M., Khalil Bagy, H. M. M., Hashem, M., Alamri, S. A. M., & Mostafa, Y. S. (2019). Biological control of the tomato wilt caused by Clavibacter michiganensis subsp. michiganensis using formulated plant growth-promoting bacteria. Egyptian Journal of Biological Pest Control, 29, 54. doi: https://doi.org/10.1186/s41938-019-0152-6

Ahemad, M., & Khan, M. S. (2012). Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi Journal of Biological Sciences, 19(4), 451–459. doi: https://doi.org/10.1016/j.sjbs.2012.06.003

Anjorin, S. T., Omolewa, O. R., & Salako, E. A. (2011). Germinability and seedling vigour of physic nut (Jatropha curcas L.) seeds inoculated with seed-borne fungi. African Journal of Agricultural Research, 6(12), 2655–2659. doi: https://doi.org/08.5897/AJAR09.480

Baakza, A., Vala, A. K., Dave, B. P., & Dube, H. C. (2004). A comparative study of siderophore production by fungi from marine and terrestrial habitats. Journal of Experimental Marine Biology and Ecology, 311(1), 1–9. doi: https://doi.org/10.1016/j.jembe.2003.12.028

Ben-Dov, E., Zaritsky, A., Dahan, E., Barak, Z., Sinai, R., Manasherob, R., … Margalith, Y. (1997). Extended screening by PCR for seven cry-group genes from fieldcollected strains of Bacillus thuringiensis. Applied and Environmental Microbiology, 63(12), 4883–4890. doi: https://doi.org/10.1128/aem.63.12.4883-4890.1997

Cabra-Cendales, T., Rodríguez-González, C. A., Villota-Cuásquer, C. P., Tapasco-Alzate, O. A., & Hernández-Rodríguez, A (2017). Bacillus effect on the germination and growth of tomato seedlings (Solanum lycopersicum L.). Acta Biológica Colombiana, 22(1), 37–44. doi: https://doi.org/10.15446/abc.v22n1.57375

Cerón, J., Ortíz, A., Quintero, R., Guereca, L., & Bravo, A. (1995). Specific PCR primers directed to identify cryI and cryIII genes within a Bacillus thuringiensis strain collection. Applied and Environmental Microbiology, 61(11), 3826–3831.doi: https://doi.org/10.1128/aem.61.11.3826-3831.1995

Chantawannakul, P., Oncharoen, A., Klanbut, K., Chukeatirote, E., & Lumyong, S. (2002). Characterization of proteases of Bacillus subtilis strain 38 isolated from traditionally fermented soybean in Northern Thailand. ScienceAsia, 28, 241—245. doi: https://doi.org/10.2306/scienceasia1513-1874.2002.28.241

Desai, S., Narayanaiah, C., Kumari, C. K., Reddy, M. S., Gnanamanickam, S. S., Rao, G. R., & Venkateswarlu, B. (2007). Seed inoculation with Bacillus spp. improves seedling vigour in oil-seed plant Jatropha curcas L. Biology and Fertility of Soils, 44, 229—234. doi: https://doi.org/10.1007/s00374-007-0209-7

Dharmaputra, O. S., Worang, R. L., Syarief, R., & Miftahudin. (2009). The quality of physic nut (Jatropha curcas) seeds affected by water activity and duration of storage. Microbiology Indonesia, 3(3),139—145. doi: https://doi.org/10.5454/mi.3.3.6

Gatson, J. W., Benz, B. F., Chandrasekaran, C., Satomi, M., Venkateswaran, K., & Hart, M. E. (2006). Bacillus tequilensissp. nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis. International Journal of Systematic and Evolutionary Microbiology, 56(7), 1475—1484. doi: https://doi.org/10.1099/ijs.0.63946-0

Góngora-Canul, C. C., Martínez-Sebastián, G., Aguilera-Cauich, E. A., Uc-Varguez, A., López-Puc, G., & Pérez-Hernández, O. (2018). Spatio-temporal dynamics of mealybug (Hemiptera: Pseudococcidae) populations in plantations of Jatropha curcas L. in Yucatan, Mexico. Industrial Crops and Products, 117, 110—117. doi: https://doi.org/10.1016/j.indcrop.2017.12.070

Hernández-Guerra, H., Castrejón-Gómez, V. R., Velázquez-del Valle, M. G., Figueroa-Brito, R., Castrejón-Ayala, F., & Hernández-Lauzardo, A. N. (2016). Activity of rhizobacteria of Jatropha curcas against Fusarium verticillioides and Leptoglossus zonatus. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(3), 255—268. doi: https://doi.org/10.5154/r.rchscfa.2015.05.024

Jha, C. K., Patel, D., Rajendran, N., & Saraf, M. (2010). Combinatorial assessment on dominance and informative diversity of PGPR from rhizosphere of Jatropha curcas L. Journal of Basic Microbiology, 50(3), 211—217. doi: https://doi.org/10.1002/jobm.200900272

Jha, C. K., Patel, B., & Saraf, M. (2012). Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2. World Journal of Microbiology and Biotechnology, 28, 891—899. doi: https://doi.org/10.1007/s11274-011-0886-0

Jha, C. K., & Saraf, M. (2012). Evaluation of multispecies plant-growth-promoting consortia for the growth promotion of Jatropha curcas L. Journal of Plant Growth Regulation, 31, 588—598. doi: https://doi.org/10.1007/s00344-012-9269-5

Karimi, K., Amini, J., Harighi, B., & Bahramnejad, B. (2012). Evaluation of biocontrol potential of Pseudomonas and Bacillus spp. against Fusarium wilt of chickpea. Australian Journal of Crop Science, 6(4), 695—703. Retrieved from https://www.cabi.org/isc/FullTextPDF/2012/20123167040.pdf

Keneni, Y. G., Hvoslef-Eide, A. K., & Marchetti, J. M. (2019). Mathematical modelling of the drying kinetics of Jatropha curcas L. seeds. Industrial Crops and Products, 132,12—20. doi: https://doi.org/10.1016/j.indcrop.2019.02.012

Latha, P., Anand, T., Prakasam, V., Jonathan, E. I., Paramathma, M., & Samiyappan, R. (2011). Combining Pseudomonas, Bacillus and Trichoderma strains with organic amendments and micronutrient to enhance suppression of collar and root rot disease in physic nut. Applied Soil Ecology, 49, 215—223. doi: https://doi.org/10.1016/j.apsoil.2011.05.003

Leong, W. H., Teh, S. Y., Hossain, M. M., Nadarajaw, T., Zabidi-Hussin, Z., Chin, S. Y., ... Lim, S. H. E. (2020). Application, monitoring and adverse effects in pesticide use: the importance of reinforcement of good agricultural practices (GAPs). Journal of Environmental Management, 260, 109987. doi: https://doi.org/10.1016/j.jenvman.2019.109987

Martínez-Zavala, S. A., Barboza-Pérez, U. E., Hernández-Guzmán, G., Bideshi, D. K., & Barboza-Corona, J. E. (2020). Chitinases of Bacillus thuringiensis: phylogeny, modular structure, and applied potentials. Frontiers in Microbiology, 10, 3032. doi: https://doi.org/10.3389/fmicb.2019.03032

Mazumdar, P., Singh, P., Babu, S., Siva, R., & Harikrishna, J. A. (2018). An update on biological advancement of Jatropha curcas L.: New insight and challenges. Renewable and Sustainable Energy Reviews, 91, 903—917. doi: https://doi.org/10.1016/j.rser.2018.04.082

Mohamad, O. A. A., Li, L., Ma, J. B., Hatab, S., Xu, L., Guo, J. W., ... Li, W. J. (2018). Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Frontiers in Microbiology, 9, 924. doi: https://doi.org/10.3389/fmicb.2018.00924

National Center for Biotechnology Information (NCBI). (2020). BLAST: Basic Local Alignment Search Tool. Bethesda, MD, USA: National Library of Medicine (US), National Center for Biotechnology Information. Retrieved from https://blast.ncbi.nlm.nih.gov/Blast.cgi

Olanrewaju, O. S., Glick, B. R., & Babalola, O. O. (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33(11), 197. doi: https://doi.org/10.1007/s11274-017-2364-9

Oluwatoyin, F. I., & Anthony, E. A. (2019). The effect of Fusarium oxysporum and Macrophomina phaseolina on the proximate composition of Jatropha curcas seed a biofuel plant. Journal of Biotechnology and Biomedicine, 2, 001-008. doi: https://doi.org/10.26502/jbb.2642-9128004

Pabón-Baquero, D., Velázquez-del Valle, M. G., Evangelista-Lozano, S., León-Rodriguez, R., & Hernández-Lauzardo, A. N. (2015). Chitosan effects on phytopathogenic fungi and seed germination of Jatropha curcas L. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 21(3), 241—253. doi: 10.5154/r.rchscfa.2014.10.051

Pyo, J. S., Shrestha, S. A., Park, S. H., & Kang, J. S. (2014). Biological control of plant growth using the plant growth-promoting rhizobacterium Bacillus mojavensis KJS-3. Journal of Life Science, 24(12), 1308—1315. doi: https://doi.org/10.5352/jls.2014.24.12.1308

Qi, J., Aiuchi, D., Tani, M., Asano, S.I., & Koike, M. (2016). Potential of entomopathogenic Bacillus thuringiensis as plant growth promoting rhizobacteria and biological control agents for tomato Fusarium Wilt. International Journal of Environmental & Agriculture Research, 2(6), 55—63. Retrieved from https://ijoear.com/Paper-June-2016/IJOEAR-JUN-2016-4.pdf

Qian, Y., Shi, J., Chen, Y., Lou, L., Cui, X., Cao, R., ...Tang, J. (2010). Characterization of phosphate solubilizing bacteria in sediments from a shallow eutrophic lake and a wetland: Isolation, molecular identification and phosphorus release ability determination. Molecules, 15(11), 8518—8533. doi: https://doi.org/10.3390/molecules15118518

Saavedra, T. M., Figueroa, G. A., & Cauih, J. G. D. (2017). Origin and evolution of tomato production Lycopersicon esculentum in México. Ciência Rural, 47(3), e20160526. doi: https://doi.org/10.1590/0103-8478cr20160526

Saragih, T. H., Fajri, D. M. N., Mahmudy, W. F., Abadi, A. L., & Anggodo, Y. P. (2018). Jatropha curcas disease identification with extreme learning machine. Indonesian Journal of Electrical Engineering and Computer Science, 12(2), 883—888. doi: https://doi.org/10.11591/ijeecs.v12.i2.pp883-888

Sauka, D. H., Cozzi, J. G., & Benintende, G. B. (2005). Screening of cry2 genes in Bacillus thuringiensis isolates from Argentina. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 88(2), 163—165. doi: https://doi.org/10.1007/s10482-005-3368-2

Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47—56. doi: https://doi.org/10.1016/0003-2697(87)90612-9

Systat Software, Inc. (2007). SigmaPlot version 10.0. San Jose California, USA: Author. Retrieved from https://systatsoftware.com/products/sigmaplot/sigmaplot-product-updates/

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731—2739. doi: https://doi.org/10.1093/molbev/msr121

Uzair, B., Kausar, R., Bano, S. A., Fatima, S., Badshah, M., Habiba, U., & Fasim, F. (2018). Isolation and molecular characterization of a model antagonistic Pseudomonas aeruginosa divulging in vitro plant growth promoting characteristics. BioMed Research International, Article ID 6147380. doi: https://doi.org/10.1155/2018/6147380

Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697—703. doi: https://doi.org/10.1128/jb.173.2.697-703.1991

Wong-Villarreal, A., Yañez-Ocampo, G., Hernández-Nuñez, E., Corzo-González, H., Giácoman-Vallejos, G., González-Sánchez, A., ...Espinosa-Zaragoza, S. (2019). Bacteria from Jatropha curcas rhizosphere, degrades aromatic hydrocarbons and promotes growth in Zea mays. Open Agriculture, 4(1), 641—649. doi: https://doi.org/10.1515/opag-2019-0066

Yang, L. N., He, M. H., Ouyang, H. B., Zhu, W., Pan, Z. C., Sui, Q. J., ... Zhan, J. (2019). Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action. BMC Microbiology, 19(1), 205. doi: https://doi.org/10.1186/s12866-019-1574-8

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Revista Chapingo Serie Ciencias Forestales y del Ambiente