Revista Chapingo Serie Ciencias Forestales y del Ambiente
Impacts of tropical hurricanes on the vegetation cover of the lower basin and estuary of San José del Cabo, Baja California Sur, Mexico
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

natural disturbances
resilience
precipitation
Hurricane Lidia
remote sensing

How to Cite

Shiba-Reyes, M., Troyo, T., Martínez-Rincón, R., & Breceda, A. (2020). Impacts of tropical hurricanes on the vegetation cover of the lower basin and estuary of San José del Cabo, Baja California Sur, Mexico. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(1), 165–180. https://doi.org/10.5154/r.rchscfa.2020.03.011

##article.highlights##

  • The effect of 11 tropical hurricanes was analyzed with satellite images and vegetation indices.
  • The average stability of the vegetation cover was 90 %.
  • Hurricanes providing more than 50 % of annual precipitation cause loss of vegetation cover.
  • Vegetation loss after Odile and Lidia was 35.4 % and 20.5 %, respectively.
  • Deforestation and increased fires and hurricanes compromise ecosystem resilience.

Abstract

Introduction: Tropical hurricanes modify composition and structure of ecosystems.
Objective: To analyze the impact of tropical hurricanes on the recovery and resilience of vegetation cover.
Materials and methods: The resilience of the lower basin and estuary of San Jose del Cabo was evaluated by studying the impact of 11 tropical hurricanes (2013-2017) on the vegetation cover. Landsat images were analyzed for each event and two SPOT-6 images for the Hurricane Lidia. The areas of gain, stability, loss and recovery of vegetation types were estimated based on the analysis of changes in the Normalized Difference Vegetation Index (NDVI).
Results and discussion: Average stability of vegetation cover was 90 %; however, in the case of hurricane Odile (2014) and Lidia (2017), stability decreased considerably, with a loss of 35.4 and 20.5 %, respectively, being the perennial herbaceous vegetation the most affected. One year after Odile and Lidia, recovery was 8.4 % and 25.4 %, respectively; the most recovered vegetation type was reed-tree. The analysis of SPOT-6 images allowed the detailed observation of Lidia's effect on palm grove. The main cause of its loss was runoff from the stream, which favored the growth of invasive species (Arundo donax L. and Tamarix sp.); furthermore, it was estimated that 1.4 ha were deforested, and an area of 20 ha affected by fire in 2017.
Conclusion: Vegetation is resilient to tropical hurricanes; however, events that provide more than 50 % of annual precipitation decrease the capacity of vegetation to recover.

https://doi.org/10.5154/r.rchscfa.2020.03.011
PDF

References

Breceda, A. (2007). Ficha informativa de los humedales de RAMSAR (FIR). Retrieved from https://rsis.ramsar.org/RISapp/files/RISrep/MX1827RIS.pdf

Cada, V., Morrisey, R., Michlová, Z., Bace, R., Janda, P., & Svoboda, M. (2016). Frequent severe natural disturbance and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. Forest Ecology and Management, 363, 169‒178. doi: https://doi.org/ 10.1016/j.foreco.2015.12.023

Climate Prediction Center Internet Team. (2019). National Weather Service. Climate prediction center. Retrieved March 20, 2019 from https://www.cpc.ncep.noaa.gov/

Cuevas-Reyes, P. (2010). Importancia de la resiliencia biológica como posible indicador del estado de conservación de los ecosistemas: implicaciones en los planes de manejo y conservación de la biodiversidad. Biológicas, 12(1),1‒7. Retrieved from https://www.biologicas.umich.mx/index.php?journal=biologicas&page=article&op=view&path%5B%5D=67&path%5B%5D=67

De Nova-Vázquez, E., Castro-Ibarra, G., & Ramos-Ramos, H. (2018). Identificación de la vegetación urbana en la Ciudad de México; evaluación de cuatro métodos para la determinación de umbrales en el índice normalizado de diferencias de vegetación y de la clasificación supervisada. Realidad, Datos y Espacio Revista Internacional de Estadística y Geografía, 9(3), 58‒73. Retrieved from http://internet.contenidos.inegi.org.mx/contenidos/sitios/rdebeta/rde_26a/RDE26.pdf

Díaz, S. (2010). Variabilidad de los ciclones tropicales que afectan a México. Interciencia, 35(4), 306‒310. Retrieved from http://dspace.cibnor.mx:8080/bitstream/handle/123456789/2786/1436.PDF?sequence=1&isAllowed=y

Doyle, T., Krauss, K., & Wells, C. (2009). Landscape analysis and pattern of hurricane impact and circulation on mangrove forest of the Everglades. Wetlands, 29(1), 44‒53. doi: https://doi.org/ 10.1672/07-233.1

Farfán, L., Alfaro, E., & Cavazos, T. (2013). Characteristics of tropical cyclone making landfall on the Pacific coast of Mexico: 1970-2010. Atmósfera, 26(2), 163‒182. doi: https://doi.org/ 10.1016/S0187-6236(13)71070-1

Farfan, L., D´Sa, E., & Liu, K. (2014). Tropical cyclone impacts on coastal regions: the case of the Yucatán and the Baja California Peninsulas, México. Estuaries and Coasts, 37, 1388‒1402. doi: https://doi.org/ 10.1007/s12237-014-9797-2

Flores-Maldonado, J. J., Prado-Navarro, A., Domínguez-Orozco, A. L., Mendoza, R., & Gonzáles-Martínez, A. I. (2008). El carrizo gigante, especie invasora de ecosistemas riparios. Biodiversitas, 81, 6‒10. Retrieved from https://www.researchgate.net/publication/283318716_El_carrizo_gigante_especie_invasora_de_ecosistemas_riparios

Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., & Holling, C. S. (2004). Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics, 35, 557‒81. doi: https://doi.org/ 10.1146/annurev.ecolsys.35.021103.105711

Gill, N., Jarvis, D., Veblen, T., Pickett, S., & Kulakowski, D. (2017). Is initial post-disturbance regeneration indicative of longer-term trajectories? Ecosphere, 8(8), e01924. doi: https://doi.org/ 10.1002/ecs2.1924

Gunderson, L. (2000). Ecological resilience in theory and application. Annual Review of Ecology and Systematics, 31, 425‒439. doi: https://doi.org/ 10.1146/annurev.ecolsys.31.1.425

Islebe, G. A., Torrescano-Valle, N., Valdez-Hernández, M., Tuz-Novelo, M., & Weissenberg, H. (2009). Efectos del impacto del huracán Dean en la vegetación del sureste de Quintana Roo, México. Foresta Veracruzana, 11(1), 1‒6. Retrieved from https://www.redalyc.org/articulo.oa?id=49711999001

Jiménez-Rodriguez, D. L., Alvarez-Añorve, M. Y., Pineda-Cortes, M., Flores-Puerto, J. I., Benítez-Malvido, J., Oyama, K., & Avila-Cabadilla, L. D. (2018). Structural and functional traits predict short-term response of tropical dry forest to a high intensity hurricane. Forest Ecology and Management, 426, 101‒114. doi: https://doi.org/ 10.1016/j.foreco.2018.04.009

Maass, M., Ahedo-Hernández, R., Araiza, S., Verduzco, A., Martínez-Yrízar, A., Jaramillo, V., …Sarukhán, J. (2018). Long-term (33 years) rainfall and runoff dynamics in a tropical dry forest ecosystem in western Mexico: Management implication under extreme weather events. Forest Ecology and Management, 426, 7‒17. doi: https://doi.org/ 10.1016/j.foreco.2017.09.040

Manson, R., & Jardel, E. (2009). Perturbaciones y desastres naturales: impactos sobre las ecorregiones, la biodiversidad y el bienestar socioeconómico. In CONABIO (Ed.), Capital natural de México, vol. II: Estado de conservación y tendencias de cambio (pp. 131‒184). México: Author. Retrieved from https://bioteca.biodiversidad.gob.mx/janium/Documentos/13328.pdf

Martínez-Yrízar, A., Jaramillo, V., Maass, M., Búrquez, A., Parker, G., Álvarez-Yépiz, J. C., …Sarukhan, J. (2018). Resilience of tropical dry forest productivity to two hurricanes of different intensity in western Mexico. Forest Ecology and Management, 426, 53‒60. doi: https://doi.org/ 10.1016/j.foreco.2018.02.024

Mcdowell, N., Coops, N., Beck, P., Chambers, J., Gongodamage, C., Hicke, J., …Allen, C. (2015). Global satellite monitoring of climate-induced vegetation disturbance. Trend in Plant Science, 20(2), 114‒123. doi: https://doi.org/ 10.1016/j.tplants.2014.10.008

Muñoz, P. (2013). Apuntes de teledetección: Índices de vegetación. Retrieved from https://www.researchgate.net/publication/327558326_Apuntes_de_Teledeteccion_Indices_de_vegetacion

National Hurricane Center. (2017). National Hurricane Center and Central Pacific Hurricane Center. Retrieved November 7, 2017 from https://www.nhc.noaa.gov/data/

Navarro-Martínez, A., Duran-García, R., & Méndez-González, M. (2012). El impacto del huracán Dean sobre la estructura y composición arbórea de un bosque manejado en Quintana Roo, México. Maderas y Bosques, 18(1), 57‒76. doi: https://doi.org/ 10.21829/myb.2012.1811138

Negrón-Juárez, R., Baker, D. B., Chambers, J. Q., Hurtt, G. C., & Goosem, S. (2014). Multi-scale sensitivity of Landsat and MODIS to forest disturbance associated with tropical cyclone. Remote Sensing of Environment, 140, 679‒689. doi: https://doi.org/ 10.1016/j.rse.2013.09.028

Parker, G., Martínez-Yrízar, A., Álvarez-Yépiz, J. C., Maass, M., & Araiza, S. (2018). Effect of hurricane disturbance on a tropical dry forest canopy in western Mexico. Forest Ecology and Management, 426, 39‒52. doi: https://doi.org/ 10.1016/j.foreco.2017.11.037

Pronatura Noroeste, A. C. (2010). Plan de conservación del estero San José del Cabo, B. C. S., México. Retrieved from http://mexicobirdingtrail.org/wp-content/uploads/2013/06/Plan-de-Conservacion-ESJC_ver.2.pdf

QGIS Development Team. (2019). QGIS Geographic Information System. Open Source Geospatial Foundation Project. Retrieved March 20, 2019 from http://qgis.osgeo.org

Savage, S., Lawrance, R., & Squires, J. (2017). Mapping post-disturbance landscape composition with Landsat satellite imagery. Forest Ecology and Management, 399, 9‒23. doi: https://doi.org/ 10.1016/j.foreco.2017.05.017

Sobel, A., Camargo, S., Hall, T., Lee, C., Tippett, M., & Wing, A. (2016). Human influence on tropical cyclone intensity. Natural Hazard, 353(6296), 242‒246. doi: https://doi.org/ 10.1126/science.aaf6574

The R Foundation. (2015). The R project for Statistical Computing. Vienna, Australia: Author. Retrieved from https://www.r-project.org/

Thompson, I. (2011). Biodiversidad, umbrales ecosistémicos, resiliencia y degradación forestal. Unnasylva, 238(62), 25‒30. Retrieved from http://www.fao.org/3/i2560s/i2560s05.pdf

Walker, L. R. (1991). Tree damage and recovery from hurricane Hugo in Luquillo Experimental Forest, Puerto Rico. Biotropica, 23(4), 379‒385. doi: https://doi.org/ 10.2307/2388255

Wurl, J., & Imaz, M. A. (2016). Las condiciones hidrológicas en la cuenca San José del Cabo, Baja California Sur, México. Áreas Naturales Protegidas Scripta, 2(2), 91‒102. doi: https://doi.org/ 10.18242/anpscripta.2016.02.02.02.0005

Zhang, L., Karnauskas, K., Donnelly, J., & Emanuel, K. (2017). Response of the North Pacific tropical cyclone climatology to global warming: Application of dynamical downscaling to CMIP5 Models. American Meteorological Society, 30(4), 1233‒1243. doi: https://doi.org/ 10.1175/JCLI-D-16-0496.1

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente