Revista Chapingo Serie Ciencias Forestales y del Ambiente
Populations of Pinus radiata D. Don differ in low-temperature tolerance and growth rate
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Damage index
water stress
Cedros Island
Guadalupe Island
absolute growth rate

How to Cite

de Jesus-Reyes, G. ., Vargas-Hernández, J. J. ., Cruz-Huerta, N. ., & López-Upton, L.-U. (2020). Populations of Pinus radiata D. Don differ in low-temperature tolerance and growth rate. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 26(3), 469–484. https://doi.org/10.5154/r.rchscfa.2019.12.096

##article.highlights##

  • The tolerance of Pinus radiata to low temperatures was evaluated in populations of Cedars and Guadalupe islands.
  • In winter and spring we obtained average damage index (DI) of 50 and 64 %, respectively.
  • The DI was similar in both favorable moisture treatment and drought.
  • The population of Guadalupe was more sensitive to low temperatures (-12 °C for 4 h).
  • The population of Guadalupe showed a higher growth rate in greenhouses and in the open.

Abstract

Introduction: In Pinus radiata D. Don, one of the most widely planted pines globally, frost damages plantations at the seedling stage.
Objective: To determine differences in growth and tolerance to low temperatures of native populations (Guadalupe and Cedros islands) of P. radiata in greenhouse and outdoors conditions, under different levels of soil moisture.
Materials and methods: Low-temperature tolerance was determined through the damage index (DI) in freezing tests at -12 °C during 4 h. In each environment (greenhouse and outdoors) two soil moisture treatments were defined (irrigation and drought). The DI was evaluated with the method of electrical conductivity in primary needles during winter and spring. The absolute growth rate (AGR) of the terminal shoot was obtained by measuring the total height of the seedlings.
Results and discussion: Average DI of 50 and 64 % were obtained in winter and spring, respectively. In greenhouse, DI was different (P ≤ 0.05) between populations, being higher in Guadalupe (>59 %) than in Cedros (<42 %), both in winter and spring. Outdoors, Cedros (64.1 %) had a higher DI than Guadalupe (36.5 %) only during winter. DI was similar in both favorable soil moisture and drought conditions. The Guadalupe population presented higher AGRs in both environments and moisture conditions.
Conclusion: The population of Guadalupe is more sensitive to low temperatures with greater variation in DI, due to its growth dynamics. Differences between populations are useful in the genetic improvement of the species.

https://doi.org/10.5154/r.rchscfa.2019.12.096
PDF

References

Aldrete, A., Mexal, J. G., & Burr, K. E. (2008). Seedling cold hardiness, bud set, and bud break in nine provenances of Pinus greggii Engelm. Forest Ecology and Management, 255(11), 3672–3676. doi: https://doi.org/10.1016/j.foreco.2008.02.054

Ambroise, V., Legay, S., Guerriero, G., Hausman, J.-F., Cuypers, A., & Sergeant, K. (2020). The roots of plant frost hardiness and tolerance. Plant Cell Physiology, 61(1), 3–20. doi: https://doi.org/10.1093/pcp/pcz196

Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological, and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026–2032. doi: https://doi.org/10.5897/AJAR10.027

Arias, N. S., Bucci, S. J., Scholz, F. G., & Goldstein, G. (2015). Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity. Plant, Cell and Environment, 38(10), 2061–2070. doi: https://doi.org/10.1111/pce.12529

Arias, R. C., Reyes, J. J., Ray, J. V., Benítez, D. G., Hernández, L. G., & Ledea, J. L. (2019). Indicadores morfométricos en nuevas variedades megatérmicas de Cenchrus purpureus tolerantes al estrés hídrico. Tropical and Subtropical Agroecosystems, 22(1), 115–125. Retrieved from http://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/ 2784/ 1223

Bachofen, C., Wohlgemuth, T., Ghazoul, J., & Moser, B. (2016). Cold temperature extremes during spring do not limit the range shift of Mediterranean pines into regions with intermittent frost. Functional Ecology, 30(6), 856–865. doi: https://doi.org/10.1111/1365-2435.12581

Blödner, C., Skroppa, T., Johnsen, O., & Polle, A. (2005). Freezing tolerance in two Norway spruce (Picea abies [L.] Karst.) progenies is physiologically correlated with drought tolerance. Journal of Plant Physiology, 162(5), 549–558. doi: https://doi.org/10.1016/j.jplph.2004.09.005

Burdon, R. D. (2001). Pinus radiata. In F. T. Last. (Ed.), Ecosystems of the world. Tree crop ecosystems (vol. 19, pp. 99–161). Amsterdam, The Netherlands: Elsevier.

Burdon, R. D., Bannister, M. H., & Low, C. B. (1992). Genetic survey of Pinus radiata. 2: Population comparisons for growth rate, disease resistance, and morphology. New Zealand Journal of Forestry Science, 22(2/3), 138–159. Retrieved from https://www.researchgate.net/publication/288957107_Genetic_survey_of_Pinus_radiata_2_Population_comparisons_for_growth_rate_disease_resistance_and_morphology

Čehulić, I., Sever, K., Bogdan, I., Jazbec, A., Škvorc, Ž., & Bogdan, S. (2019). Drought impact on leaf phenology and spring frost susceptibility in a Quercus robur L. provenance trial. Forests, 10(1), 50. doi: https://doi.org/10.3390/f10010050

Charra-Vaskou, K., Charrier, G., Wortemann, R., & Beikircher, B. (2012). Drought and frost resistance of trees: A comparison of four species at different sites and altitudes. Annals of Forest Science, 69(3), 325–333. doi: https://doi.org/10.1007/s13595-011-0160-5

Climent, J., Costa e Silva, F., Chambel, M. R., Pardos, M., & Almeida, M. H. (2009). Freezing injury in primary and secondary needles of Mediterranean pine species of contrasting ecological niches. Annals of Forest Science, 66(4), 407–407. doi: https://doi.org/10.1051/forest/2009016

Ensminger, I., Hüner, N. P. A., & Busch, F. (2009). Conifer cold hardiness, climate change and the likely effects of warmer temperatures on photosynthesis. In L. V. Gusta, M. E. Wisniewski, & K. K. Tanino (Eds.), Plant cold hardiness. From the laboratory to the field (pp. 249–261). London, UK: CAB International.

Fløistad, I. S., & Granhus, A. (2010). Bud break and spring frost hardiness in Picea abies seedlings in response to photoperiod and temperature treatments. Canadian Journal of Forest Research, 40(5), 968–976. doi: https://doi.org/10.1139/X10-050

González-Abraham, C. E., Garcillán, P. P., & Ezcurra, E. (2010). Ecorregiones de la península de Baja California: una síntesis. Boletín de la Sociedad Botánica de México, 87, 69–82. doi: https://doi.org/10.17129/botsci.302

Greer, D. H., Robinson, L. A., Hall, A. J., Klages, K., & Donnison, H. (1998). Frost hardening of Pinus radiata seedlings: effects of temperature on relative growth rate, carbon balance and carbohydrate concentration. Tree Physiology, 20(2), 107–114. doi: https://doi.org/10.1093/treephys/20.2.107

Harrison, S. P., Prentice, I. C., Barboni, D., Kohfeld, K. E., Ni, J., & Sutra, J.-P. (2010). Ecophysiological and bioclimatic foundations for a global plant functional classification. Journal of Vegetation Science, 21(2), 300–317. doi: https://doi.org/10.1111/j.1654-1103.2009.01144.x

Hoeksema, J. D., Vargas-Hernández, J. J., Rogers, D. L., Luna-Mendoza, L., & Thompson, J. N. (2012). Geographic divergence in a species‐rich symbiosis: interactions between Monterey pines and ectomycorrhizal fungi. Ecology, 93(10), 2274–2285. Retrieved from https://www.researchgate.net/publication/233786825_Geographic_divergence_in_a_species-rich_symbiosis_Interactions_between_Monterey_pines_and_ectomycorrhizal_fungi

Intergovernmental Panel on Climate Change (IPCC). (2013). Climate Change 2013: The physical science basis. Working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, …P. M. Midgley (Eds.). Cambridge, UK and New York, USA: Cambridge University Press.

Jansons, A., Matisons, R., Libiete-Zālīte, Z., Baders, E., & Rieksts-Riekstiņš, J. (2013). Relationships of height growth of Lodgepole pine (Pinus contorta var. latifolia) and Scots pine (Pinus sylvestris) with climatic factors in Zvirgzde, Latvia. Baltic Forestry, 19(2), 236–244. Retrieved from https://www.researchgate.net/publication/286021721_Relationships_of_Height_Growth_of_Lodgepole_Pine_Pinus_contorta_var_latifolia_and_Scots_Pine_Pinus_sylvestris_with_Climatic_Factors_in_Zvirgzde_Laivia

Kalcsits, L., Silim, S., & Tanino, K. (2009). The influence of temperature on dormancy induction and plant survival in woody plants In L. V. Gusta, M. E. Wisniewski, & K. K. Tanino (Eds.), Plant cold hardiness. From the laboratory to the field (pp. 249–261). London, UK: CAB International.

Kodra, E., Steinhaeuser, K., & Ganguly, A. R. (2011). Persisting cold extremes under 21st‐century warming scenarios. Geophysical Research Letters, 38(8), 1–5. doi: https://doi.org/10.1029/2011GL047103

Kreyling, J., Wiesenberg, G. L. B., Thiel, D., Wohlfart, C., Huber, G., Walter, J., & Beierkuhnleina, C. (2012). Cold hardiness of Pinus nigra Arnold as influenced by geographic origin, warming, and extreme summer drought. Environmental and Experimental Botany, 78, 99–108. doi: https://doi.org/10.1016/j.envexpbot.2011.12.026

Larcher, W. (2000). Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosystems, 134(3), 279–295. doi: https://doi.org/10.1080/11263500012331350455

Larcher, W. (2005). Climatic constraints drive the evolution of low temperature resistance in woody plants. Journal of Agricultural Meteorology, 61(4), 189–202. doi: https://doi.org/10.2480/agrmet.61.189

Ledig, T., Vargas-Hernández, J. J., & Johnsen, K. H. (1998). The conservation of forest genetic resources: case histories from Canada, Mexico, and the United States. Journal of Forestry, 96(1), 32–41. doi: https://doi.org/10.1093/jof/96.1.32

Man, R., Lu, P., & Dang, Q-L. (2017a). Cold hardiness of white spruce, black spruce, jack pine, and lodgepole pine needles during dehardening. Canadian Journal of Forest Research, 47(8), 1116–1122. doi: https://doi.org/10.1139/cjfr-2017-0119

Man, R., Lu, P., & Dang, Q-L. (2017b). Insufficient chilling effects vary among boreal tree species and chilling duration. Frontiers in Plant Science, 8, 1354. doi: https://doi.org/10.3389/fpls.2017.01354

Matusick, G., Ruthrof, K. X., Brouwers, N. C., & Hardy, G. St. J. (2014). Topography influences the distribution of autumn frost damage on trees in a Mediterranean-type Eucalyptus forest. Trees, 28, 1449–1462. doi: https://doi.org/10.1007/s00468-014-1048-4

McDonald, P. M., & Laacke, R. J. (1990). Pinus radiata D. Don Monterey Pine. In R. M. Burns & B. H. Honkala (Eds.), The silvics of North America. Conifers (vol. 1, pp. 433–441). Washington, DC, USA: US Forest Service.

Mead, D. J. (2013). Sustainable management of Pinus radiata plantations. Rome: FAO doi: https://doi.org/10.13140/2.1.5173.0885

Millar, C. I. (1999). Evolution and biogeography of Pinus radiata, with a proposed revision of its Quaternary history. New Zealand Journal of Forestry Science, 29(3), 335–365. Retrieved from https://www.fs.fed.us/psw/publications/millar/captured/psw_1999_millar011.pdf

Neuner, G. (2014). Frost resistance in alpine woody plants. Frontiers in Plant Science, 5, 1–13. doi: https://doi.org/10.3389/fpls.2014.00654

Oberbauer, T. A. (2006). La vegetación de Isla Guadalupe, entonces y ahora. Gaceta Ecológica, 81, 47–58. Retrieved from https://www.redalyc.org/pdf/539/53908104.pdf

Palacio, S., Milla, R., & Montserrat-Martí, G. (2005). A phenological hypothesis on the thermophilous distribution of Pistacia lentiscus L. Flora - Morphology, Distribution, Functional Ecology of Plants, 200(6), 527–534. doi: https://doi.org/10.1016/j.flora.2005.06.004

Pearce, R. (2001). Plant freezing and damage. Annals of Botany, 87(4), 417–424. doi: https://doi.org/10.1006/anbo.2000.1352

Perry, J. P. (2009). The pines of México and Central America. Portland, Oregon: Timber Press.

Robson, T. M., Rasztovits, E., Aphalo, P. J., Alia, R., & Aranda, I. (2013). Flushing phenology and fitness of European beech (Fagus sylvatica L.) provenances from a trial in La Rioja, Spain, segregate according to their climate of origin. Agricultural and Forest Meteorology, 180, 76–85. doi: https://doi.org/10.1016/j.agrformet.2013.05.008

Roden, J. S., Canny, M. J., Huang, C. X., & Ball, M. C. (2009). Frost tolerance and ice formation in Pinus radiata needles: ice management by the endodermis and transfusion tissues. Functional Plant Biology, 36(2), 180–189. doi:10.1071/fp08247

Rogers, D. L. (2002). In situ genetic conservation of Monterey pine (Pinus radiata D. Don): Information and recommendations. USA: Division of Agriculture and Natural Resources, Genetic Resources Conservation Program.

Rogers, D. L. (2004). In situ genetic conservation of a naturally restricted and commercially widespread species, Pinus radiata. Forest Ecology and Management, 197(1-3), 311–322. doi: https://doi.org/10.1016/j.foreco.2004.05.022

Rogers, D. L., Matheson, A. C., Vargas-Hernández, J. J., & Guerra-Santos, J. J. (2006). Genetic conservation of insular populations of Monterey pine (Pinus radiata D. Don). Biodiversity & Conservation, 15(2), 779–798. doi: https://doi.org/10.1007/s10531-004-1066-4

Rogers, D. L., Vargas-Hernández, J. J., Matheson, A. C., & Guerra, S. J. J. (2005). Conserving the pines of Guadalupe and Cedros Islands, Mexico: an international collaboration. In A. Romero & S. E. West (Eds.), Environmental issues in Latin America and the Caribbean (pp. 31–54). Dordrecht, The Netherlands: Springer. doi: https://doi.org/10.1007/1-4020-3774-0_2

Sáenz-Romero, C., & Tapia-Olivares, B. L. (2008). Genetic variation in frost damage and seed zone delineation within an altitudinal transect of Pinus devoniana (P. michoacana) in Mexico. Silvae Genetica, 57(1-6), 165–170. doi: https://doi.org/10.1515/sg-2008-0025

SAS Institute. (2003). The SAS System for Windows 9.0. Cary, NC, USA: Author.

Sharma, B., & Deswal, R. (2014). Antifreeze proteins in plants: an overview with an insight into the detection techniques including nanobiotechnology. Journal of Proteins and Proteomics, 5(2), 89–107. Retrieved from https://www.researchgate.net/publication/268742011_Antifreeze_Proteins_in_Plants_An_overview_with_an_insight_into_the_detection_techniques_including_nanobiotechnology

Sogaard, G., Granhus, A., & Johnsen, O. (2009). Effect of frost nights and day and night temperature during dormancy induction on frost hardiness, tolerance to cold storage and bud burst in seedlings of Norway spruce. Trees, 23, 1295–1307. doi: https://doi.org/10.1007/s00468-009-0371-7

Thomas, F. M., & Ahlers, U. (1999). Effects of excess nitrogen on frost hardiness and freezing injury of above-ground tissue in young oaks (Quercus petraea and Q. robur). New Phytologist, 144(1), 73–83. doi: https://doi.org/10.1046/j.1469-8137.1999.00501.x

Viveros-Viveros, H., Sáenz-Romero, C., López-Upton, J., & Vargas-Hernández, J. J. (2007). Growth and frost damage variation among Pinus pseudostrobus, P. montezumae and P. hartwegii tested in Michoacán, México. Forest Ecology and Management, 253(1), 81–88. doi: https://doi.org/10.1016/j.foreco.2007.07.005

Viveros-Viveros, H., Sáenz-Romero, C., Vargas-Hernández, J. J., López-Upton, J., Ramírez-Valverde, G., & Santacruz-Varela, A. (2009). Altitudinal genetic variation in Pinus hartwegii Lindl. I: Height growth, shoot phenology, and frost damage in seedlings. Forest Ecology and Management, 257(3), 836–842. doi: https://doi.org/10.1016/j.foreco.2008.10.021

Walter, J., Jentsch, A., Beierkuhnlein, C., & Kreyling, J. (2013). Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environmental and Experimental Botany, 94, 3–8. doi: https://doi.org/10.1016/j.envexpbot.2012.02.009

Williams, C. M., Henry, H. A., & Sinclair, B. J. (2015). Cold truths: how winter drives responses of terrestrial organisms to climate change. Biological Reviews, 90(1), 214–235. doi: https://doi.org/10.1111/brv.12105

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente