Revista Chapingo Serie Ciencias Forestales y del Ambiente
Hojarasca de árboles de bosque tropical seco dispersos en pastizales
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

Vachellia pennatula
Lysiloma acapulcense
lignina
nitrógeno
leguminosas

Cómo citar

Avendaño-Yáñez, M. de la L., Quiroz-Martínez, S. ., Pérez-Elizalde, S., & López-Ortiz, S. . (2020). Hojarasca de árboles de bosque tropical seco dispersos en pastizales. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 26(3), 409–418. https://doi.org/10.5154/r.rchscfa.2019.12.092

##article.highlights##

  • Lysiloma acapulcense y Vachellia pennatula depositan cantidades similares de hojarasca en pastizales.
  • El contenido de nitrógeno y lignina es similar en las dos especies.
  • La relación lignina-nitrógeno es menor en las hojas de V. pennatula (21.3) que en L. acapulcense (32.1).
  • Los momentos del punto máximo y final de caída de hojarasca difieren entre ambas leguminosas.

Resumen

Introducción: Los árboles dispersos del bosque tropical seco (BTS) depositan una cantidad significativa de hojarasca en los pastizales.
Objetivo: Estimar la producción de hojarasca de árboles dispersos de Lysiloma acapulcense (Kunth) Benth. y Vachellia pennatula (Schltdl. & Cham.) Seigler & Ebinger en pastizales, durante la estación seca.
Materiales y métodos: Se recolectó la hojarasca de 10 árboles dispersos de cada especie en un pastizal de 10 ha, durante el periodo de senescencia de las hojas (noviembre a mayo). La cantidad de hojarasca se evaluó y se separó en componentes para determinar el contenido de nitrógeno (N) y lignina (L), y la proporción L/N. La caída de hojas se analizó con un modelo logístico doble. Las medias de las variables se compararon entre especies mediante una prueba t de Student.
Resultados y discusión: La cantidad de hojarasca y los contenidos de N y L no difirieron entre especies (P > 0.05), mientras que la proporción L/N fue mayor en L. acapulcense (32.1) que en V. pennatula (21.3). La fase de defoliación de L. acapulcense es más larga que la de V. pennatula.
Conclusión: Es importante conocer la cantidad y la calidad de la hojarasca que los árboles dispersos aportan en los pastizales para ayudar a la adopción de sistemas agroforestales, que incluyan especies nativas del BTS.

https://doi.org/10.5154/r.rchscfa.2019.12.092
PDF

Citas

Association of Official Analytical Chemists (AOAC). (1980). Official methods of analysis. (13th ed). Washington D.C., USA: Author.

Aryal, D. R., Gómez-González, R. R., Hernández-Nuriasmú, R., & Morales-Ruiz, D. E. (2018). Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agroforestry Systems, 93(1), 213‒227. doi: https://doi.org/10.1007/s10457-018-0310-y

Aryal, D. R., De Jong, B. H. J., Ochoa-Gaona, S., Mendoza-Vega, J., & Esparza-Olguin, L. (2015). Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico. Nutrient Cycling in Agroecosystems, 103(1), 45–60. doi: https://doi.org/10.1007/s10705-015-9719-0

Austin, A. T., & Ballaré, C. L. (2010). Dual role of lignin in litter decompositoin in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4618‒4622. doi: https://doi.org/10.1073/pnas.0909396107

Avendaño-Yáñez, M. L., López-Ortiz, S., Perroni, Y., & Pérez-Elizalde, S. (2018). Leguminous trees from tropical dry forest generate fertility islands in pastures. Arid Land Research and Management, 32(1), 57‒70. doi: https://doi.org/10.1080/15324982.2017.1377782

Beck, P. S. A., Atzberger, C., Høgda, K. A., Johansen, B., & Skidmore, A. K. (2006). Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sensing of Environment, 100(3), 321‒334. doi: https://doi.org/10.1016/j.rse.2005.10.021

Camacho-Moreno, E., López-Ortiz, S., Olguín-Palacios, C., Suárez-Islas, A., Valdez-Hernández, J. I., & Pineda-Herrera, E. (2017). Fenología y arquitectura arbórea de Calyptranthes schiedeana O. Berg, Lysiloma acapulcense (Kunth) Benth y Tabebuia chrysantha (Jacq.) G. Nicholson en agroecosistemas de Veracruz. Revista Mexicana de Ciencias Forestales, 8(40), 19‒35. doi: https://doi.org/10.29298/rmcf.v8i40.33

Campo, J., & Vázquez-Yañez, C. (2004). Effects of nutrient limitation on aboveground carbon dynamics during tropical dry forest regeneration in Yucatán, Mexico. Ecosystems, 7(3), 311‒319. doi: https://doi.org/10.1007/s10021-003-0249-2

Ceccon, E., Sánchez, I., & Powers, J. S. (2015). Biological potential of four indigenous tree species from seasonally dry tropical forest for soil restoration. Agroforestry Systems, 89(3), 455‒467. doi: https://doi.org/10.1007/s10457-014-9782-6

de Oliveira, A. V. X. O., Dubeux, J. C. B. Jr., de Andrade, L. M., Sampaio, E. V. S. B., Oliveira de Amorim, S., Gomes de Miranda, N., & Muir, J. P. (2016). Arboreal legume litter nutrient contribution to a tropical silvopasture. Agronomy Journal, 108(6), 2478‒2484. doi: https://doi.org/10.2134/agronj2016.02.0120

de Queiroz, M. G., Freire da Silva, T. G., Zolnier, S., Alves de Souza, C. A., Bastos de Souza, L. S., Neto, S., Garcia, L. G., & Pinto, M. F. W. (2019). Seasonal patterns of deposition litterfall in a seasonal dry tropical forest. Agricultural and Forest Meteorology, 279, 107712 . doi: https://doi.org/10.1016/j.agrformet.2019.107712

Dutta, R. K., & Agrawal, M. (2001). Litterfall, litter decomposition and nutrient release in five exotic plant species planted on coal mine spoils. Pedobiologia, 45(4), 298‒312. doi: https://doi.org/10.1078/0031-4056-00088

Elmore, A. J., Guinn, S. M., Minsley, B. J., & Richards, A. D. (2012). Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests. Global Change Biology, 18(2), 656‒674. doi: https://doi.org/10.1111/j.1365-2486.2011.02521.x

Finotti, R., Freitas, S. R., Cerqueira, R., & Vieira, M. V. (2003). A method to determine the minimum number of litter traps in litterfall studies. Biotropica, 35(3), 419‒421. doi: https://doi.org/10.1111/j.1744-7429.2003.tb00595.x

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen (5.a ed.). México: Instituto de Geografía, Universidad Nacional Autónoma de México (UNAM).

Huang, Y., Ma, K., Niklaus, P. A., & Schmid, B. (2018). Leaf-litter overyielding in a forest biodiversity experiment in subtropical China. Forest Ecosystems, 5, 38. doi: https://doi.org/10.1186/s40663-018-0157-8

Kozovits, A. R., Bustamante, M. M. C., Garofalo, C. R., Bucci, S., Franco, A. C., Goldstein, G., & Meinzer, F. C. (2007). Nutrient resorption and patterns of litter production and decomposition in a neotropical savanna. Functional Ecology, 21(6), 1034‒1043. doi: https://doi.org/10.1111/j.1365-2435.2007.01325.x

Krishna, M. P., & Mohan, M. (2017). Litter decomposition in forest ecosystems: a review. Energy, Ecology and Environment, 2(4), 236‒249. doi: https://doi.org/10.1007/s40974-017-0064-9

Loranger, G., Ponge, J. F., Imbert, D., & Lavelle, P. (2002). Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality. Biology and Fertility of Soils, 35(4), 247‒252. doi: https://doi.org/10.1007/s00374-002-0467-3

Manning, A. D., Fischer, J., & Lindenmayer, D. B. (2006). Scattered trees as keystone structures––implications for conservation. Biological Conservation, 132(3), 311‒321. doi: https://doi.org/10.1016/j.biocon.2006.04.023

Oyun, M. B. (2006). Chemical characterization of selected tree legumes as indices for their litter quality. Journal of Applied Sciences, 6, 2321‒2324. doi: https://doi.org/10.3923/jas.2006.2321.2324

Rahman, M. M., Tsukamoto, J., Rahman, M. M., Yoneyama, A., & Mostafa, K. M. (2013). Lignin and its effects on litter decomposition in forest ecosystems. Chemistry and Ecology, 29(6), 540‒553. doi: https://doi.org/10.1080/02757540.2013.790380

Rivest, D., Paquette, A., Moreno, G., & Messier, C. (2013). A meta-analysis reveals mostly neutral influence of scattered trees on pasture yield along with some contrasted effects depending on functional groups and rainfall conditions. Agriculture Ecosystems and Environment, 165, 74‒79. doi: https://doi.org/10.1016/j.agee.2012.12.010

SAS Institute. (2010). SAS, Enterprise Guide. Version 4.3.0. Cary, NC USA: Author.

Sayer, E. J., & Tanner, E. V. J. (2010). Experimental investigation of the importance of litterfall in lowland semi‐evergreen tropical forest nutrient cycling. Journal of Ecology, 98(5), 1052‒1062. doi: https://doi.org/10.1111/j.1365-2745.2010.01680.x

Suárez, A., Williams-Linera, G., Trejo, C., Valdez, J. I., Cetina-Alcalá, V., & Vibrans, H. (2012). Local knowledge helps select tree species for forest restoration in a tropical dry forest of central Veracruz, Mexico. Agroforestry Systems, 85(1), 35‒55. doi: https://doi.org/10.1007/s 10457-011-9437-9

The R Project for Statistical Computing. (2015). Data analysis software system, version 3.2.3. Austria: The R Foundation. Retrieved from https://www.r-project.org

Van Soest, P. V., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583‒3597. doi: https://doi.org/10.1890/15-0112.1

Vitousek, P. M., & Sanford, R. L. (1986). Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics, 17, 137‒167. doi: https://doi.org/10.1146/annurev.es.17.110186.001033

Williams-Linera, G., Alvarez-Aquino, C., Hernández-Ascención, E., & Toledo, M. (2011). Early successional sites and the recovery of vegetation structure and tree species of the tropical dry forest in Veracruz, Mexico. New Forests, 42(2), 131‒148. doi: https://doi.org/10.1007/s11056-010-9242-8

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente