Revista Chapingo Serie Ciencias Forestales y del Ambiente
Index for the estimation of the occurrence of forest fires in large areas
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

fire risk
fuel accumulation
fire prediction
density distribution
burned area

How to Cite

Torres-Rojo, J. M. . (2020). Index for the estimation of the occurrence of forest fires in large areas. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 26(3), 433–449. https://doi.org/10.5154/r.rchscfa.2019.11.082

##article.highlights##

  • An index for large areas called Area at Risk of Fire (SeR) was developed.
  • The density distribution was estimated from the area affected (1970-2018) in Mexico.
  • Changes to the index generate a comparable indicator across territorial units.
  • The SeR index has the potential to predict the extent of loss.

Abstract

Introduction: Estimating the risk of occurrence of a fire contributes to reducing human, infrastructure and natural resource losses; promoting activities to maintain and restore fire regimes; and optimizing resources for suppression.
Objective: To develop an index of occurrence of forest fires on large areas, called Area at risk of fire (SeR).
Materials and methods: The index corresponds to the area associated with a probability level measured at the right tail of the density distribution of the area affected annually by forest fires. The density distribution was estimated from the history of the area affected (1970-2018) in Mexico by state. The fit was performed by minimizing the Kolmogorov- Smirnov statistic with four models: exponential, gamma, lognormal and Weibull. Two related indicators are proposed: proportion of forest area affected by wildfires (PSeR) and incremental area at risk (ISeR).
Results and discussion: all models showed a statistically significant fit (P < 0.05); the lognormal model performed the best. The SeR discriminates territorial units with the largest area affected by fires; additionally, it efficiently predicts the area to be affected by fires. The PSeR facilitates the comparison of the risk of fire occurrence between territorial units of different sizes, while the ISeR estimates the change in the maximum area affected by fires over a period.
Conclusion: SeR is an extreme event risk index that provides useful information and has a statistically acceptable predictive power.

https://doi.org/10.5154/r.rchscfa.2019.11.082
PDF

References

Adab, H., Kanniah, K. D., & Solaimani, K. (2013). Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Natural Hazards, 65(3), 1723‒1743. doi: https://doi.org/10.1007/s11069-012-0450-8

Adab, H., Kanniah, K. D., Solaimani, K., & Sallehuddin, R. (2015). Modelling static fire hazard in a semi-arid region using frequency analysis. International Journal of Wildland Fire, 24(6), 763‒777. Retrieved from http://www.publish.csiro.au/wf/WF13113

Ager, A. A., Vaillant, N. M., & Finney, M. A. (2010). A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. Forest Ecology and Management, 259(8), 1556‒1570. doi: https://doi.org/10.101 6/foreco.2010.01.032

Alvarado, E., Sandberg, D. V., & Pickford, S. G. (1998). Modeling large forest fires as extreme events. Northwest Science, 72, 66‒75. Retrieved from https://www.researchgate.net/publication/312916018_Modeling_large_forest_fires_as_extreme_events

Ávila, F. D., Pompa, G. M., Antonio, N. X., Rodriguez, T. D. A., Vargas, P. E., & Santillán, P. J. (2010). Driving factors for forest fire occurrence in Durango State of Mexico: A geospatial perspective. Chinese Geographical Science, 20(6), 491‒497. doi: https://doi.org/10.1007/s11769-010-0437-x

Comisión Nacional Forestal (CONAFOR). (2019). Incendios forestales: Serie histórica de datos. Retrieved from https://datos.gob.mx/busca/organization/conafor

Cui, W., & Perera, A. H. (2008). What do we know about forest fire size distribution, and why is this knowledge useful for forest management? International Journal of Wildland Fire, 17(2), 234‒244. Retrieved from http://www.publish.csiro.au/wf/wf06145

Cumming, S. G. (2001). A parametric model of the fire-size distribution. Canadian Journal of Forest Research, 31(8), 1297‒1303. doi: https://doi.org/10.1139/x01-032

Dowd, K. (2003). An introduction to market risk measurement. West Sussex, England: John Wiley & Sons.

Federal Emergency Management Agency (FEMA). (2002). Guidelines and specifications for flood hazard mapping partners. Appendix D: guidance for coastal flooding analyses and mapping. Retrieved from https://www.fema.gov/es/media-library/assets/documents/13948

Fernandes, P. M., Pacheco, A. P., Almeida, R., & Claro, J. (2016). The role of fire-suppression force in limiting the spread of extremely large forest fires in Portugal. European Journal of Forest Research, 135(2), 253‒262. doi: https://doi.org/10.1007/s10342-015-0933-8

Finney, M. A. (2005). The challenge of quantitative risk analysis for wildland fire. Forest Ecology and Management, 211(1-2), 97‒108. doi: https://doi.org/10.1016/j.foreco.2005.02.010

Food and Agricultural Organization (FAO). (2007). Fire management global assessment 2006. A thematic study prepared in the framework of the Global Forest Resources Assessment 2005. FAO Forestry Paper 151. Retrieved from http://www.fao.org/3/a0969e/a0969e00.htm

Forbes, C., Evans, M., Hastings, N., & Peacock, B. (2011). Statistical distributions. New Jersey, Estados Unidos: John Wiley & Sons.

Holmes, T. P., Huggett, R. J., & Westerling, A. L. (2008). Statistical analysis of large wildfires. In T. P. Holmes, J. P. Prestemon, & K. L. Abt (Eds.), The economics of forest disturbances. Forestry sciences (vol. 79, pp. 59‒77). Dordrecht, Holanda: Springer. doi: https://doi.org/10.1007/978-1-4020-4370-3_4

Instituto Nacional de Estadística y Geografía (INEGI). (2015). Carta de uso del suelo y vegetación de México. Retrieved from http://www.beta.inegi.org.mx/app/mapas/ default.html?

International Panel on Climate Change (IPCC). (2007). Climate Change 2007. Impacts, adaptation, and vulnerability. Contribution of working group II to the fourth assessment report of the IPCC. Cambridge, UK: Cambridge University Press. Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf

Irland, L. C. (2013). Extreme value analysis of forest fires from New York to Nova Scotia, 1950–2010. Forest Ecology and Management, 294, 150‒157. doi: https://doi.org/10.1016/j.foreco.2012.09.004

Jiang, Y., & Zhuang, Q. (2011). Extreme value analysis of wildfires in Canadian boreal forest ecosystems. Canadian Journal of Forest Research, 41(9), 1836‒1851. doi 10.1139/x11-102

Jiang, Y., Zhuang, Q., Flannigan, M. D., & Little, J. M. (2009). Characterization of wildfire regimes in Canadian boreal terrestrial ecosystems. International Journal of Wildland Fire, 18(8), 992–1002. Retrieved from http://www.publish.csiro.au/WF/WF08096

Jones, G. M., Gutiérrez, R. J., Tempel, D. J., Whitmore, S. A., Berigan, W. J., & Peery, M. Z. (2016). Megafires: an emerging threat to old‐forest species. Frontiers in Ecology and the Environment, 14(6), 300‒306. doi: https://doi.org/10.1002/fee.1298

Jorion, P. (2000). Value at risk. New York, USA: McGraw-Hill.

Katz, R. W., Brush, G. S., & Parlange, M. B. (2005). Statistics of extremes: modeling ecological disturbances. Ecology, 86(5), 1124‒1134. doi: https://doi.org/10.1890/04-0606

Keeley, J. E., Fotheringham, C. J., & Morais, M. (1999). Reexamining fire suppression impacts on brushland fire regimes. Science, 284(5421), 1829‒1832. doi: https://doi.org/10.1126/science.284.5421.1829

Liu, Y., Stanturf, J., & Goodrick, S. (2010). Trends in global wildfire potential in a changing climate. Forest Ecology & Management, 259(4), 685‒697. doi: https://doi.org/10.1016/j.foreco.2009.09.002

Malamud, B. D., Morein, G., & Turcotte, D. L. (1998). Forest fires: An example of self-organized critical behavior. Science, 281(5384), 1840‒1842. doi: https://doi.org/10.1126/science.281.5384.1840

Marlon, J. R., Bartlein, P. J., Walsh, M. K., Harrison, S. P., Brown, K. J., Edwards, M. E., Brunelle, A., …Whitlock, C. (2009). Wildfire responses to abrupt climate change in North America. Proceedings of the National Academy of Sciences, 106(8), 2519‒2524. doi: https://doi.org/10.1073/pnas.0808212106

Miller, C., & Ager, A. A. (2013). A review of recent advances in risk analysis for wildfire management. International Journal of Wildland Fire, 22(1), 1‒14. doi: https://doi.org/10.1071/WF11114

Moore, P. F. (2019). Global wildland fire management research needs. Current Forestry Reports, 5, 210–225. doi: https://doi.org/10.1007/s40725-019-00099-y

Munn, I. A., Zhai, Y., & Evans, D. L. (2003). Modeling forest fire probabilities in the south central United States using FIA data. Southern Journal of Applied Forestry, 27(1), 11‒17. doi: https://doi.org/10.1093/sjaf/27.1.11

Podschwit, H., Larkin, N., Steel, E., Cullen, A., & Alvarado, E. (2018). Multi-model forecasts of very-large fire occurrences during the end of the 21st century. Climate, 6(4), 100. doi: https://doi.org/10.3390/cli6040100

Podur, J., Martell, D. L., & Knight, K. (2002). Statistical quality control analysis of forest fire activity in Canada. Canadian Journal of Forest Research, 32(2), 195‒205. doi: https://doi.org/10.1139/x01-183

Podur, J. J., Martell, D. L., & Stanford, D. (2009). A compound Poisson model for the annual area burned by forest fires in the province of Ontario. Environmetrics, 21(5), 457‒469. doi: https://doi.org/10.1002/env.996

Preisler, H. K., Brillinger, D. R., Burgan, R. E., & Benoit, J. W. (2004). Probability based models for estimation of wildfire risk. International Journal of Wildland Fire, 13(2), 133‒142. doi: https://doi.org/10.1071/WF02061

Read, L. K., & Vogel, R. M. (2016). Hazard function theory for nonstationary natural hazards. Natural Hazards and Earth System Sciences, 16, 915–925. doi: https://doi.org/10.5194/nhess-16-915-2016

Reed, W. J. (2001). The Pareto, Zipf and other power laws. Economics Letters, 74(1), 15‒19. doi: https://doi.org/10.1016/S0165-1765(01)00524-9

Rodríguez, T. D. A. (2015). Incendios de vegetación: su ecología, manejo e historia (vol. 2). Texcoco, México: Colegio de Posgraduados.

Schoenberg, F. P., Peng, R., & Woods, J. (2003). On the distribution of wildfire sizes. Environmetrics, 14(3), 583‒592. doi: https://doi.org/10.1002/env.605

Stojanova, D., Panov, P., Kobler, A., Džeroski, S., & Taškova, K. (2006). Learning to predict forest fires with different data mining techniques. Retrieved from https://www.researchgate.net/publication/228527438_Learning_to_predict_forest_fires_with_different_data_mining_techniques

Strauss, D., Bednar, L., & Mees, R. (1989). Do one percent of the forest fires cause ninety-nine percent of the damage? Forest Science, 35(2), 319‒328. doi: https://doi.org/10.1093/forestscience/35.2.319

Sun, C., & Tolver, B. (2012). Assessing the distribution patterns of wildfire sizes in Mississippi, USA. International Journal of Wildland Fire, 21(5), 510‒520. doi: https://doi.org/10.1071/WF10107

Taylor, S. W., Woolford, D. G., Dean, C. B., & Martell, D. L. (2013). Wildfire prediction to inform management: statistical science challenges. Statistical Science, 28(4), 586‒615. doi: https://doi.org/10.1214/13-STS45

Thompson, M. P., & Calkin, D. E. (2011). Uncertainty and risk in wildland fire management: a review. Journal of Environmental Management, 92(8), 1895‒1909. doi: https://doi.org/10.1016/j.jenvman.2011.03.015

Torres-Rojo, J. M., Magaña-Torres, O. S., & Ramírez-Fuentes, G. A. (2007). Índice de peligro de incendios forestales de largo plazo. Agrociencia, 41(6), 663‒674. Retrieved from http://www.scielo.org.mx/pdf/agro/v41n6/1405-3195-agro-41-06-663.pdf

Vasilakos, C., Kalabokidis, K., Hatzopoulos, J., Kallos, G., & Matsinos, Y. (2007). Integrating new methods and tools in fire danger rating. International Journal of Wildland Fire, 16(3), 306–316. doi: https://doi.org/10.1071/WF05091

Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase western US forest wildfire activity. Science, 313(5789), 940–943. doi: https://doi.org/10.1126/science.1128834

Wiitala, M. R., & Carlton, D. W. (1994). Assessing long-term fire movement risk in wilderness fire management. Proceedings of the International Conference on Fire and Forest Meteorology, 12, 187–194.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente