Revista Chapingo Serie Ciencias Forestales y del Ambiente
Análisis bibliométrico de la modelación de bosques templados manejados: una perspectiva global en las herramientas de manejo forestal sustentable
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

producción científica
redes de colaboración
manejo forestal
silvicultura
secuestro de carbono

Cómo citar

Ordoñez-Díaz, M. C., & Galicia, L. (2020). Análisis bibliométrico de la modelación de bosques templados manejados: una perspectiva global en las herramientas de manejo forestal sustentable. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 26(3), 357–372. https://doi.org/10.5154/r.rchscfa.2019.11.079

##article.highlights##

  • La modelación de bosques templados manejados (MBTM) incrementó a partir del 2012.
  • El incremento se debe a la necesidad de mitigación y adaptación de los bosques al cambio global.
  • Las temáticas están enfocadas en la producción de biomasa, cambio climático y secuestro de carbono.
  • La aplicación de MBTM en México se enfocó en la visión netamente silvícola.

Resumen

Introducción: El análisis bibliométrico es una herramienta cuantitativa para reconocer las tendencias y brechas de investigación en temáticas de interés científico.
Objetivo: Identificar los avances en la producción científica, las redes de colaboración, temáticas de investigación y aplicación de modelación de bosques templados manejados (MBTM), a nivel global, en relación con el manejo, productividad, almacenamiento de carbono y ciclado de nutrientes.
Materiales y métodos: La revisión se centró en la recopilación de datos de la plataforma Web of Science Core Collection en el periodo 2005-2019.
Resultados y discusión: El análisis bibliométrico permitió recolectar 960 artículos científicos especializados en el tema, provenientes de revistas indizadas en Journal Citation Reports (JCR). Las instituciones con mayor autoridad académica en estudios sobre manejo forestal fueron Natural Resources of Canada (NRCan), Institut National de la Recherche Agronomique (INRA) y US Forest Service. Las temáticas de MBTM se enfocaron en el crecimiento de plantaciones forestales, efectos de las prácticas silvícolas en la estructura, productividad, secuestro de carbono y, en menor medida, en la disponibilidad de nutrientes. México presentó baja colaboración con otras instituciones y un enfoque netamente silvícola en la aplicación de modelación.
Conclusiones: El análisis permitió orientar la investigación en MBTM para México. Se recomienda la implementación de modelación para lograr un aprovechamiento forestal basado en la comprensión integral del sistema y así garantizar su sostenibilidad.

https://doi.org/10.5154/r.rchscfa.2019.11.079
PDF

Citas

Abdelnour, A., McKane, R. B., Stieglitz, M., Pan, F., & Cheng, Y. (2013). Effects of harvest on carbon and nitrogen dynamics in a Pacific Northwest forest catchment. Water Resources Research, 49(3), 1292–1313. doi: https://doi.org/10.1029/2012WR012994

Aber, J. D., & Driscoll, C. T. (1997). Effects of land use, climate variation, and N deposition on N cycling and C storage in northern hardwood forests. Global Biogeochemical Cycles, 11(4), 639–648. doi: https://doi.org/10.1029/97GB01366

Aguado-López, E., Rogel-Salazar, R., Garduño-Oropeza, G., Becerril-García, A., Zúñiga-Roca, M. F., &Velázquez-Álvarez, A. (2009). Patrones de colaboración científica a partir de redes de coautoría. Convergencia. Revista de Ciencias Sociales, 225–258. Retrieved from https://www.redalyc.org/articulo.oa?id=10512244010

Aleixandre-Benavent, R., Aleixandre-Tudó, J. L., Castelló-Cogollos, L., & Aleixandre, J. L. (2018). Trends in global research in deforestation. A bibliometric analysis. Land Use Policy, 72, 293–302. doi: https://doi.org/10.1016/j.landusepol.2017.12.060

Barefoot, C. R., Willson, K. G., Hart, J. L., Schweitzer, C. J., & Dey, D. C. (2019). Effects of thinning and prescribed fire frequency on ground flora in mixed Pinus-hardwood stands. Forest Ecology and Management, 432, 729–740. doi: https://doi.org/10.1016/j.foreco.2018.09.055

Bhowmik, A., Fortuna, A.-M., Cihacek, L. J., Bary, A. I., Carr, P. M., & Cogger, C. G. (2017). Potential carbon sequestration and nitrogen cycling in long-term organic management systems. Renewable Agriculture and Food Systems, 32(06), 498–510. doi: https://doi.org/10.1017/s1742170516000429

Bray, D. B., Merino-Pérez, L., & Barry, D. (2007). El manejo comunitario en sentido estricto: las empresas forestales comunitarias de México.In D. B. Bray, L. Merino, & D. Barry (Eds.), Los bosques comunitarios de México: manejo sustentable de paisajes forestales (pp. 21–50). México: CCMSS, SEMARNAT, INE.Retrieved from https://www.ccmss.org.mx/acervo/los-bosques-comunitarios-de-mexico-manejo-sustentable-de-paisajes-forestales/

Bryars, C., Maier, C., Zhao, D., Kane, M., Borders, B., Will, R., & Teskey, R. (2013). Fixed physiological parameters in the 3-PG model produced accurate estimates of loblolly pine growth on sites in different geographic regions. Forest Ecology and Management, 289, 501–514. doi: https://doi.org/10.1016/j.foreco.2012.09.031

Caiado, R. G. G., Dias, R. F., Mattos, L. V., Quelhas, O. L. G., & Filho, W. L. (2017). Towards sustainable development through the perspective of eco-efficiency - A systematic literature review. Journal of Cleaner Production, 165, 890–904. doi: https://doi.org/10.1016/j.jclepro.2017.07.166

Camacho, E. R., & Chong, J. H. (2015). General biology and current management approaches of soft scale pests (Hemiptera: Coccidae). Journal of Integrated Pest Management, 6(1). doi: https://doi.org/10.1093/jipm/pmv016

Chávez-Pascual, E. Y., Rodríguez-Ortiz, G., Enríquez-Del Valle, J. R., Velasco-Velasco, V. A., & Gómez-Cárdenas, M. (2017). Compartimentos de biomasa aérea en rodales de Pinus oaxacana bajo tratamientos silvícolas. Madera y Bosques, 23(3), 147–161. doi: https://doi.org/10.21829/myb.2017.2331627

Chen, C. (2006). CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377. doi: https://doi.org/10.1002/asi.20317

Chen, B., Arain, M. A., Khomik, M., Trofymow, J. A., Grant, R. F., Kurz, W. A., … Wang, Z. (2013). Evaluating the impacts of climate variability and disturbance regimes on the historic carbon budget of a forest landscape. Agricultural and Forest Meteorology, 180, 265–280. doi: https://doi.org/10.1016/j.agrformet.2013.06.002

Chen, D., Liu, Z., Luo, Z., Webber, M., & Chen, J. (2016). Bibliometric and visualized analysis of emergy research. Ecological Engineering, 90, 285–293. doi: https://doi.org/10.1016/j.ecoleng.2016.01.026

Comision Nacional Forestal (CONAFOR). (2020).El sector forestal mexicano en cifras 2019. 2020. Retrieved from https://www.gob.mx/conafor/documentos/el-sector-forestal-mexicano-en-cifras-2019

Corral-Rivas, J. J., Vega-Nieva, D. J., Rodríguez-Soalleiro, R., López-Sánchez, C. A., Wehenkel, C., Vargas-Larreta, B., … Ruiz-González, A. D. (2017). Compatible system for predicting total and merchantable stem volume over and under bark, branch volume and whole-tree volume of pine species. Forests, 8(11), 417. doi: https://doi.org/10.3390/f8110417

Creutzburg, M. K., Scheller, R. M., Lucash, M. S., Evers, L. B., Leduc, S. D., & Johnson, M. G. (2016). Bioenergy harvest, climate change, and forest carbon in the Oregon Coast Range. GCB Bioenergy, 8(2), 357–370. doi: https://doi.org/10.1111/gcbb.12255

Dangal, S. R. S., Felzer, B. S., & Hurteau, M. D. (2014). Effects of agriculture and timber harvest on carbon sequestration in the eastern US forests. Journal of Geophysical Research: Biogeosciences, 119(1), 35–54. doi: https://doi.org/10.1002/2013JG002409

Douterlungne, D., Herrera-Gorocica, A. M., Ferguson, B. G., Siddique, I., & Soto-Pinto, L. (2013). Ecuaciones alométricas para estimar biomasa y carbono de cuatro especies leñosas neotropicales con potencial para la restauración. Agrociencia, 47(4), 385–397. Retrieved from http://www.scielo.org.mx/pdf/agro/v47n4/v47n4a7.pdf

Flamenco-Sandoval, A., Ramos, M. M., & Masera, O. R. (2007). Assessing implications of land-use and land-cover change dynamics for conservation of a highly diverse tropical rain forest. Biological Conservation, 138(1–2), 131–145. doi: https://doi.org/10.1016/j.biocon.2007.04.022

Forrester, D. I. (2014). The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. Forest Ecology and Management, 312, 282–292. doi: https://doi.org/10.1016/j.foreco.2013.10.003

Galicia, L., Gamboa, A., Cram, S., Chávez, B., Peña, V., Saynes, V., & Christina, S. (2016). Almacén y dinámica del carbono orgánico del suelo en bosques templados de México. Terra Latinoamericana, 35(1), 1–29. Retrieved from http://www.revistas-conacyt.unam.mx/terra/index.php/terra/article/viewFile/73/79

Galicia, L., & Zarco-Arista, A. E. (2014). Multiple ecosystem services, possible trade-offs and synergies in a temperate forest ecosystem in Mexico: A review. International Journal of Biodiversity Science, Ecosystem Services and Management, 10(4), 275–288. doi: https://doi.org/10.1080/21513732.2014.973907

Gonzalez-Benecke, C. A., Martin, T. A., Cropper, W. P., & Bracho, R. (2010). Forest management effects on in situ and ex situ slash pine forest carbon balance. Forest Ecology and Management, 260(5), 795–805. doi: https://doi.org/10.1016/j.foreco.2010.05.038

Griffiths, N. A., Rau, B. M., Vaché, K. B., Starr, G., Bitew, M. M., Aubrey, D. P., … Jackson, C. R. (2019). Environmental effects of short-rotation woody crops for bioenergy: What is and isn’t known. GCB Bioenergy, 11(4), 554–572. doi: https://doi.org/10.1111/gcbb.12536

Harper, A. B., Cox, P. M., Friedlingstein, P., Wiltshire, A. J., Jones, C. D., Sitch, S., … Van Bodegom, P. (2016). Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. Geoscientific Model Development, 9(7), 2415–2440. doi: https://doi.org/10.5194/gmd-9-2415-2016

Hume, A. M., Chen, H. Y. H., & Taylor, A. R. (2018). Intensive forest harvesting increases susceptibility of northern forest soils to carbon, nitrogen and phosphorus loss. Journal of Applied Ecology, 55(1), 246–255. doi: https://doi.org/10.1111/1365-2664.12942

Karam, S. L., Weisberg, P. J., Scheller, R. M., Johnson, D. W., & Miller, W. W. (2013). Development and evaluation of a nutrient cycling extension for the LANDIS-II landscape simulation model. Ecological Modelling, 250, 45–57. doi: https://doi.org/10.1016/j.ecolmodel.2012.10.016

Kimmins, J. P. (2004). Emulating natural forest disturbance:What does this mean? In A. H. Perera, L. J. Buse, & M. G. Weber (Eds.), Emulating natural forest landscape disturbances,concepts and applications. New York, USA: Columbia University Press.

Klesse, S., Babst, F., Lienert, S., Spahni, R., Joos, F., Bouriaud, O., … Frank, D. C. (2018). A combined tree ring and vegetation model assessment of European forest growth sensitivity to interannual climate variability. Global Biogeochemical Cycles, 32(8), 1226–1240. doi: https://doi.org/10.1029/2017GB005856

Kull, S., Kurz, W. A., Rampley, G. J., Banfield, G., Schivatcheva, R., & Apps, M. (2011). Operational-scale Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3): Version 1.0, User’s Guide. Canada: Northern Forestry Centre.

Law, B. E., Hudiburg, T. W., Berner, L. T., Kent, J. J., Buotte, P. C., & Harmon, M. E. (2018). Land use strategies to mitigate climate change in carbon dense temperate forests. Proceedings of the National Academy of Sciences, 115(14), 3663–3668. doi: https://doi.org/10.1073/pnas.1720064115

Li, C. S. (2000). Modeling trace gas emissions from agricultural ecosystems. Nutrient Cycling in Agroecosystems, 58(1–3), 259–273. doi: https://doi.org/10.1023/A:1009859006242

Liu, K., Liang, Y., He, H. S., Wang, W. J., Huang, C., Zong, S., … Du, H. (2018). Long-term impacts of China’s new commercial harvest exclusion policy on ecosystem services and biodiversity in the temperate forests of Northeast China. Sustainability (Switzerland), 10(4), 1071. doi: https://doi.org/10.3390/su10041071

Locatelli, T., Gardiner, B., Tarantola, S., Nicoll, B., Bonnefond, J. M., Garrigou, D., … Patenaude, G. (2016). Modelling wind risk to Eucalyptus globulus (Labill.) stands. Forest Ecology and Management, 365, 159–173. doi: https://doi.org/10.1016/j.foreco.2015.12.035

Lundmark, T., Bergh, J., Hofer, P., Lundström, A., Nordin, A., Poudel, B. C., … Werner, F. (2014). Potential roles of Swedish forestry in the context of climate change mitigation. Forests, 5(4), 557–578. doi: https://doi.org/10.3390/f5040557

Manzoni, S., & Porporato, A. (2009). Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biology and Biochemistry, 41(7), 1355–1379. doi: https://doi.org/10.1016/j.soilbio.2009.02.031

Mikhailov, A., Bykhovets, S., Nadporozhskaya, M., Zoubkova, E., Chertov, O., Zudin, S., … Komarov, A. (2003). EFIMOD 2—a model of growth and cycling of elements in boreal forest ecosystems. Ecological Modelling, 170(2–3), 373–392. doi: https://doi.org/10.1016/s0304-3800(03)00240-0

Monárrez-González, J. C., Pérez-Verdín, G., López-González, C., Márquez-Linares, M. A., & González, E. M. D. S. (2018). Efecto del manejo forestal sobre algunos servicios ecosistémicos en los bosques templados de México. Madera y Bosques, 24(2). doi: https://doi.org/10.21829/myb.2018.2421569

Nasi, R., & Frost, P. G. H. (2009). Sustainable forest management in the tropics: Is everything in order but the patient still dying? Ecology and Society, 14(2), 40. doi: https://doi.org/10.5751/ES-03283-140240

Nunes, L., Lopes, D., Castro, R. F., & Gower, S. T. (2013). Aboveground biomass and net primary production of pine, oak and mixed pine-oak forests on the Vila Real district, Portugal. Forest Ecology and Management, 305, 38–47.doi: https://doi.org/10.1016/j.foreco.2013.05.034

Parolari, A. J., & Porporato, A. (2016). Forest soil carbon and nitrogen cycles under biomass harvest: Stability, transient response, and feedback. Ecological Modelling, 329, 64–76. doi: https://doi.org/10.1016/j.ecolmodel.2016.03.003

Parton, W., McKeown, B., Kirchner, V., & Ojima, D. (1992). CENTURY users manual. Colorado, USA: NREL Publication, Colorado State University.

Peckham, S. D., & Gower, S. T. (2013). Simulating the effects of harvest and biofuel production on the forest system carbon balance of the Midwest, USA. GCB Bioenergy, 5(4), 431–444. doi: https://doi.org/10.1111/gcbb.12033

Potapov, P., Hansen, M. C., Stehman, S. V., Loveland, T. R., & Pittman, K. (2008). Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss. Remote Sensing of Environment, 112(9), 3708–3719. doi: https://doi.org/10.1016/j.rse.2008.05.006

Pretzsch, H., Grote, R., Reineking, B., Rötzer, T., & Seifert, S. (2008). Models for forest ecosystem management: A European perspective. Annals of Botany, 101(8), 1065–1087. doi: https://doi.org/10.1093/aob/mcm246

Prieto-Amparán, J., Villarreal-Guerrero, F., Martínez-Salvador, M., Manjarrez-Domínguez, C., Vázquez-Quintero, G., & Pinedo-Alvarez, A. (2019). Spatial near future modeling of land use and land cover changes in the temperate forests of Mexico. PeerJ, 7:e6617. Retrieved from https://peerj.com/articles/6617/

Ramírez, M. D. C., Martínez, R. L. C., & Castellanos, D. O. F. (2012). Divulgación y difusión del conocimiento: las revistas científicas (2.a ed.). Bogotá, Colombia: Universidad Nacional de Colombia.

Rastetter, E. B. (2017). Modeling for understanding v. modeling for numbers. Ecosystems, 20, 215–221. doi: https://doi.org/10.1007/s10021-016-0067-y

Ricker, M., Gutiérrez-García, G., & Daly, D. C. (2007). Modeling long-term tree growth curves in response to warming climate: test cases from a subtropical mountain forest and a tropical rainforest in Mexico. Canadian Journal of Forest Research, 37(5), 977–989. doi: https://doi.org/10.1139/x06-304

Riggs, R. A., Keane, R. E., Cimon, N., Cook, R., Holsinger, L., Cook, J., … Naylor, B. (2015). Biomass and fire dynamics in a temperate forest-grassland mosaic: Integrating multi-species herbivory, climate, and fire with the FireBGCv2/GrazeBGC system. Ecological Modelling, 296, 57–78. doi: https://doi.org/10.1016/j.ecolmodel.2014.10.013

Robertson, A. D., Paustian, K., Ogle, S., Wallenstein, M. D., Lugato, E., & Cotrufo, M. F. (2018). Unifying soil organic matter formation and persistence frameworks: the MEMS model. Biogeosciences Discussions, 16, 1225–1248. doi: https://doi.org/10.5194/bg-16-1225-2019

Seidl, R., Rammer, W., Jäger, D., Currie, W. S., & Lexer, M. J. (2007). Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria. Forest Ecology and Management, 248(1-2), 64–79. doi: https://doi.org/10.1016/j.foreco.2007.02.035

Sharma, A., Bohn, K., Jose, S., & Cropper, W. P. (2014). Converting even-aged plantations to uneven-aged stand conditions: A simulation analysis of silvicultural regimes with slash pine (Pinus elliottii Engelm.). Forest Science, 60(5), 893–906. doi: https://doi.org/10.5849/forsci.13-097

Silva-Arredondo, F. M., & Návar-Cháidez, J. J. (2009). Estimación de factores de expansión de carbono en comunidades forestales templadas del norte de Durango, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 15(2), 155–163. Retrieved from http://www.scielo.org.mx/pdf/rcscfa/v15n2/v15n2a10.pdf

Smethurst, P. J., Gonçalves, J. L. de M., Pulito, A. P., Gomes, S., Paul, K., Alvares, C. A., & Arthur, J. J. C. (2015). Appraisal of the SNAP model for predicting nitrogen mineralization in tropical soils under eucalyptus. Revista Brasileira de Ciência Do Solo, 39(2), 523–532. doi: https://doi.org/10.1590/01000683rbcs20140379

Soriano-Luna, M. de los Á., Ángeles-Pérez, G., Guevara, M., Birdsey, R., Pan, Y., Vaquera-Huerta, H., … Vargas, R. (2018). Determinants of above-ground biomass and its spatial variability in a temperate forest managed for timber production. Forests, 9(8), 490–510. doi: https://doi.org/10.3390/f9080490

Svensson, M., Jansson, P.-E., &Kleja, B. D. (2008). Modelling soil C sequestration in spruce forest ecosystems along a Swedish transect based on current conditions. Biogeochemistry, 89(1), 95–119. doi: https://doi.org/10.1007/s10533-007-9134-y

Thiffault, E., Hannam, K. D., Paré, D., Titus, B. D., Hazlett, P. W., Maynard, D. G., & Brais, S. (2011). Effects of forest biomass harvesting on soil productivity in boreal and temperate forests — A review. Environmental Reviews, 19, 278–309. doi: https://doi.org/10.1139/a11-009

Thom, D., Rammer, W., Garstenauer, R., & Seidl, R. (2018). Legacies of past land use have a stronger effect on forest carbon exchange than future climate change in a temperate forest landscape. Biogeosciences, 15(18), 5699–5713. doi: https://doi.org/10.5194/bg-15-5699-2018

Thompson, J. R., Lambert, K. F., Foster, D. R., Broadbent, E. N., Blumstein, M., Zambrano, A. M., & Fan, Y. (2016). The consequences of four land-use scenarios for forest ecosystems and the services they provide. Ecosphere, 7(10), e01469.doi: https://doi.org/10.1002/ecs2.1469

Tian, S., Youssef, M. A., Skaggs, R. W., Amatya, D. M., & Chescheir, G. M. (2012). DRAINMOD-FOREST: Integrated modeling of hydrology, soil carbon and nitrogen dynamics, and plant growth for drained forests. Journal of Environment Quality, 41(3), 764–782. doi: https://doi.org/10.2134/jeq2011.0388

Urbano, A. R., & Keeton, W. S. (2017). Carbon dynamics and structural development in recovering secondary forests of the northeastern U.S. Forest Ecology and Management, 392, 21–35. doi: https://doi.org/10.1016/j.foreco.2017.02.037

Wallace, K. J., Laughlin, D. C., Clarkson, B. D., & Schipper, L. A. (2018). Forest canopy restoration has indirect effects on litter decomposition and no effect on denitrification. Ecosphere, 9(12), e02534. doi: https://doi.org/10.1002/ecs2.2534

Wang, F., Mladenoff, D. J., Forrester, J. A., Blanco, J. A., Scheller, R. M., Peckham, S. D., … Gower, S. T. (2014). Multimodel simulations of forest harvesting effects on long-term productivity and CN cycling in aspen forests. Ecological Applications, 24(6), 1374–1389.doi: https://doi.org/10.1890/12-0888.1

Wang, W., Xiao, J., Ollinger, S. V., Desai, A. R., Chen, J., & Noormets, A. (2014). Quantifying the effects of harvesting on carbon fluxes and stocks in northern temperate forests. Biogeosciences, 11, 6667–6682. doi: https://doi.org/10.5194/bg-11-6667-2014

Wang, W., Wei, X., Liao, W., Blanco, J. A., Liu, Y., Liu, S., … Guo, S. (2013). Evaluation of the effects of forest management strategies on carbon sequestration in evergreen broad-leaved (Phoebe bournei) plantation forests using FORECAST ecosystem model. Forest Ecology and Management, 300, 21–32. doi: https://doi.org/10.1016/j.foreco.2012.06.044

Wang, Y., Bauerle, W. L., & Reynolds, R. F. (2008). Predicting the growth of deciduous tree species in response to water stress: FVS-BGC model parameterization, application, and evaluation. Ecological Modelling, 217(1), 139–147. doi: https://doi.org/10.1016/j.ecolmodel.2008.06.007

Wang, Z., Zhao, Y., & Wang, B. (2018). A bibliometric analysis of climate change adaptation based on massive research literature data. Journal of Cleaner Production, 199, 1072–1082. doi: https://doi.org/10.1016/j.jclepro.2018.06.183

Wiedinmyer, C., & Hurteau, M. D. (2010). Prescribed fire as a means of reducing forest carbon emissions in the western United States. Environmental Science and Technology, 15(44), 1926–1932. doi: https://doi.org/10.1021/es902455e

Winford, E. M., & Gaither, J. C. (2012). Carbon outcomes from fuels treatment and bioenergy production in a Sierra Nevada forest. Forest Ecology and Management, 282, 1–9. doi: https://doi.org/10.1016/j.foreco.2012.06.025

Wong, D. (2018). VOSviewer. Technical Services Quarterly, 35(2), 219–220. doi: https://doi.org/10.1080/07317131.2018.1425352

Woodbury, P. B., Smith, J. E., & Heath, L. S. (2007). Carbon sequestration in the U.S. forest sector from 1990 to 2010. Forest Ecology and Management, 241, 14–27. doi: https://doi.org/10.1016/j.foreco.2006.12.008

Zhang, C. F., Meng, F. R., Bhatti, J. S., Trofymow, J. A., & Arp, P. A. (2008). Modeling forest leaf-litter decomposition and N mineralization in litterbags, placed across Canada: A 5-model comparison. Ecological Modelling, 219(3–4), 342–360. doi: https://doi.org/10.1016/j.ecolmodel.2008.07.014

Zhang, C., Fang, Y., Chen, X., & Congshan, T. (2019). Bibliometric analysis of trends in global sustainable livelihood research. Sustainability (Switzerland), 11(4), 1150. doi: https://doi.org/10.3390/su11041150

Zhang, J., Chu, Z., Ge, Y., Zhou, X., Jiang, H., Chang, J., … Yu, S. (2008). TRIPLEX model testing and application for predicting forest growth and biomass production in the subtropical forest zone of China’s Zhejiang Province. Ecological Modelling, 219(3–4), 264–275. doi: https://doi.org/10.1016/j.ecolmodel.2008.07.016

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente