Revista Chapingo Serie Ciencias Forestales y del Ambiente
Carbohydrate-based urban soil amendments to improve urban tree establishment
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Jacaranda mimosifolia
urban trees
root growth
glucose
sucrose

How to Cite

Morales-Gallegos, L. M. ., Martínez-Trinidad, T., Gómez-Guerrero, A., & Suárez-Espinosa, J. (2020). Carbohydrate-based urban soil amendments to improve urban tree establishment. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 26(3), 343–356. https://doi.org/10.5154/r.rchscfa.2019.10.076

##article.highlights##

  • The application of sucrose and glucose to the soil was evaluated on the growth of Jacaranda mimosifolia.
  • Carbohydrates had a significant effect on dry root weight and soil respiration.
  • The best growth response was obtained with 80 g·L -1 glucose and 80 g·L -1 sucrose.
  • The amendment of glucose and sucrose to the soil stimulated growth root of J. mimosifolia.

Abstract

Introduction: A factor limiting the development of tree vegetation in urban environments is the condition of the soil.
Objective: To evaluate the effect of the application of carbohydrates (sucrose and glucose) to the soil regarding the growth and vitality of jacaranda trees (Jacaranda mimosifolia D. Don) planted in urban areas.
Materials and methods: Eight carbohydrate treatments and one control (water) were applied. Increase in height and diameter, foliage color, chlorophyll fluorescence, dry root matter, root starch, respiration and soil moisture were evaluated. An analysis of variance and a comparison of means was performed (Tukey, P < 0.05); when the normal distribution of the data was not proved, nonparametric methods were used (Kruskal-Wallis and Wilcoxon rank-sum test).
Results and discussion: The increase in height and diameter, the green color of the foliage and the fluorescence of the chlorophyll showed no significant differences (P > 0.05). Dry root weight and soil respiration were significantly different (P < 0.05) with higher response in the highest carbohydrate treatment (80 g·L-1 glucose with 80 g·L-1 sucrose). There was no effect on the characteristics of the aerial part, possibly due to the short evaluation time (about one year).
Conclusion: The amendment of glucose and sucrose to the soil in urban trees stimulated the root growth of J. mimosifolia.

https://doi.org/10.5154/r.rchscfa.2019.10.076
PDF

References

Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International, 11, 36‒42. Retrieved from https://imagescience.org/meijering/publications/download/bio2004.pdf

Al-Habsi, S., & Percival, G. (2006). Sucrose-induced tolerance to and recovery from deicing salt damage in containerized Ilex aquifolium L. and Quercus robur L. Arboriculture & Urban Forestry, 32(6), 277‒285. Retrieved from http://joa.isa-arbor.com/articles.asp?JournalID=1&VolumeID=32&IssueID=6

Anderson, J. P. E. (1982). Soil respiration. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis (part 2). Chemical and microbiological properties (2nd ed., pp. 831‒871). Madison, WI, USA: American Society of Agronomy, Inc. & Soil Science Society of America, Inc.

Callow, D., May, P., & Johnstone, D. M. (2018). Tree vitality assessment in urban landscapes. Forests, 9(5), 1‒7. doi: https://doi.org/https://doi.org 10.3390/f9050279

Ceveira, G., & Lavado, R. S. (2006). Efecto del aporte de enmiendas orgánicas sobre propiedades físicas e hidrológicas de un suelo urbano degradado. Ciencia del Suelo (Argentina), 24(2), 123‒130. Retrieved from https://www.researchgate.net/profile/Gabriela_Civeira/publication/237601849

Day, S. D., Wiseman, P. E., Dickinson, S. B., & Roger, H. J. R. (2010). Tree root ecology in the urban environment and implications for a sustainable rhizosphere. Arboriculture & Urban Forestry, 36(5), 193‒205. Retrieved from http://joa.isa-arbor.com/articles.asp?JournalID=1&VolumeID=36&IssueID=5

De Abreu-Harbich, L. V., Chebel, L. L., & Matzarakis, A. (2015). Effect of tree planting design and tree species on human thermal comfort in the tropics. Landscape and Urban Planning, 138, 99‒109. doi: https://doi.org/10.1016/j.landurbplan.2015.02.008

Eyherabide, M., Saínz, R. H., Barbieri, P., & Echeverría, H. E. (2014). Comparación de métodos para determinar carbono orgánico en suelo. Ciencia del Suelo (Argentina), 32(1), 13‒19. Retrieved from https://www.researchgate.net/publication/317537397

Gómez-Guerrero, A., & Doane, T. (2018). The response of forest ecosystems to climate change. Developments in Soil Science, 35, 185‒206. doi: https://doi.org/10.1016/B978-0-444-63865-6.00007-7

Guilland, C., Maron, P. A., Damas, O., & Ranjard, L. (2018). Biodiversity of urban soils for sustainable cities. Environmental Chemistry Letters, 16(4), 1267‒1282. doi: https://doi.org/10.1007/s10311-018-0751-6

Gutiérrez, C. M. C., & Ortiz, S. C. A. (1999). Origen y evolución de los suelos en el ex lago de Texcoco, México. Agrociencia, 33(2), 199‒208. Retrieved from https://www.researchgate.net/publication/301957920

Hassan, S. M. (2018). Challenges of Soil Taxonomy and WRB in classifying soils: Some examples from Iranian soils. Bulletin of Geography. Physical Geography Series, 14, 63‒70. doi: https://doi.org/10.2478/bgeo-2018-0005

Jankovska, I., Brūmelis, G., Nikodemus, O., Kasparinskis, R., Amatniece, V., & Straupmanis, G. (2015). Tree species establishment in urban forest in relation to vegetation composition, tree canopy gap area and soil factors. Forests, 6(12), 4451‒4461. doi: https://doi.org/10.3390/f6124379

Johnston, M., & Hirons, A. (2014). Urban trees. In G. R. Dixon, & D. E. Aldous (Eds.), Horticulture: Plants for people and places (vol. 2, pp. 692‒711). Lancashire, UK: Springer. doi: https://doi.org/10.1007/978-94-017-8581-5_5

Johnstone, D., Moore, G., Tausz, M., & Nicolas, M. (2013). The measurement of plant vitality in landscape tress. Arboricultural Journal: The International Journal of Urban Forestry, 35(1), 18‒27. doi: https://doi.org/10.1080/03071375.2013.783746

Koeser, A. K., Gilman, E. F., Paz, M., & Harchick, C. (2014). Factors influencing urban tree planting program growth and survival in Florida, United States. Urban Forestry & Urban Greening, 13(4), 655‒661. doi: https://doi.org/10.1016/j.ufug.2014.06.005

Martínez-Trinidad, T., Watson, W. T., Arnold, M. A., & Lombardini, L. (2010). Microbial activity of a clay soil amended with glucose and starch under live oaks. Arboriculture & Urban Forestry, 36(2), 66‒72. Retrieved from http://joa.isa-arbor.com/articles.asp?JournalID=1&VolumeID=36&IssueID=2

Martínez-Trinidad, T., Watson, W. T., Arnold, M. A., Lombardini, L., & Appel, N. D. (2009). Carbohydrate injections as a potential option to improve growth and vitality of live oaks. Arboriculture & Urban Forestry, 35(3), 142‒147. Retrieved from http://joa.isa-arbor.com/articles.asp?JournalID=1&VolumeID=35&IssueID=3

Maselli, L. G., & Silveira, B. M. (2017). Dendrobiochemistry, a missing link to further understand carbon allocation during growth and decline of trees. Trees, 31(6), 1745‒1758. doi: https://doi.org/10.1007/s00468-017-1599-2

Mohedano-Caballero, L., Cetina-Alcalá, V. M., Chacalo-Hilu, A., Trinidad-Santos, A., & González-Cossio, F. (2005). Crecimiento y estrés post-trasplante de árboles de pino en suelo salino urbano. Revista Chapingo Serie Horticultura, 11(1), 43‒50. doi: https://doi.org/10.5154/r.rchsh.2003.06.042

Morales-Gallegos, L. M., Martínez-Trinidad, T., Gómez-Guerrero, A., Razo-Zárate, R., & Suárez-Espinosa, J. (2019). Inyecciones de glucosa en Jacaranda mimosifolia D. Don en áreas urbanas de Texcoco de Mora. Revista Mexicana de Ciencias Forestales, 10(52), 79‒98. doi: https://doi.org/10.29298/rmcf.v10i52.414

Moreno, S. E. (2007). Características territoriales, ambientales y sociopolíticas del municipio de Texcoco, Estado de México. Quivera, 9(1), 177‒206. Retrieved from http://www.redalyc.org/articulo.oa?id=40190110

Moser, A., Uhl, E., Rӧtzer, T., Biber, P., Caldentey, J. M., & Pretzsch, H. (2018). Effects of climate trends and drought events on urban tree growth in Santiago de Chile. Ciencia e Investigación Agraria, 45(1), 35‒50. doi: https://doi.org/10.7764/rcia.v45i1.1793

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2015). Portal de suelos de la FAO. Base de referencia mundial. Retrieved March 9, 2019 from http://www.fao.org/soils-portal/soil-survey/clasificacion-de-suelos/base-referencial-mundial/es/

Ow, L. F., & Yusof, M. L. (2018). Stability of four urban trees species in engineered and regular urban soli blends. Journal of Urban Ecology, 4(1), 1‒6. doi: https://doi.org/10.1093/jue/juy014

Palevitz, B. A., & Newcomb, E. H. (1970). A study of sieve element starch using sequential enzymatic digestion and electron microscopy. The Journal of Cell Biology, 45(2), 383‒398. doi: https://doi.org/10.1083/jcb.45.2.383

Paolini, G. J. E. (2017). Actividad microbiológica y biomasa microbiana en suelos cafetaleros de los Andes venezolanos. Terra Latinoamericana, 36(1), 13‒22. doi: https://doi.org/10.28940/terra.v36i1.257

Percival, G. C., & Fraser, G. A. (2005). Use of sugars to improve root growth and increase transplant success of birch (Betula pendula Roth.). Journal of Arboriculture, 31(2), 66‒77. Retrieved from https://www.researchgate.net/publication/289885427

Percival, G. C., Fraser, G. A., & Barnes, S. (2004). Soil injections of carbohydrates improve fine root growth of established urban trees. Arboricultural Journal, 28(1-2), 95‒101. doi: https://doi.org/10.1080/03071375.2004.9747404

Pereira, P., Ferreira, A. J. D., Pariente, S., Cerdà, A., Walsh, R., & Keesstra, S. (2016). Urban soils and sediments. Journal of Soils and Sediments, 16, 2493‒2499. doi: https://doi.org/10.1007/s11368-016-1566-3

Pincetl, S., Gillespie, T., Pataki, D. E., Saatchi, S., & Saphores, J. D. (2012). Urban tree planting programs, function of fashion? Los Angeles and urban tree planting campaigns. GeoJournal, 78(3), 475‒493. doi: https://doi.org/10.1007/s10708-012-9446-x

Ponge, J. F., Pérѐs, G., Guernion, M., Ruiz-Camacho, N., Cortet, J., Pernin, C., …Bispo, A. (2013). Impact of agricultural practices on soil biota: A regional study. Soil Biology and Biochemistry, 67, 271‒284. doi: https://doi.org/10.1016/j.soilbio.2013.08.026

Quentin, A. G., Pinkard, E. A., Ryan, M. G., Tissue, D. T., Baggett, L. S., Adams, H. D., …Woodruff, D. R. (2015). Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology, 35(11), 1146‒1165. doi: https://doi.org/10.1093/treephys/tpv073

Ramirez, J. A., Handa, I. T., Posada, J. M., Delagrange, S., & Messier, C. (2018). Carbohydrate dynamics in roots, stems, and branches after maintenance pruning in two common urban trees species of North America. Urban Forestry & Urban Greening, 30, 24‒31. doi: https://doi.org/10.1016/j.ufug.2018.01.013

Roman, L. A., Battles, J. J., & McBride, J. R. (2013). The balance of planting and mortality in a street tree population. Urban Ecosystems, 17(2), 387‒404. doi: https://doi.org/10.1007/s11252-013-0320-5

SAS Institute Inc. (2013). The SAS system for windows. Release 9.4. Cary, NC, USA: Author.

Scharenbroch, B. C., Meza, E. N., Catania, M., & Fite, K. (2013). Biochar and biosolids increase tree growth and improve soil quality for urban landscapes. Journal of Environmental Quality, 42(5), 1372‒1385. doi: https://doi.org/10.2134/jeq2013.04.0124

Schloter, M., Nannipieri, P., Sørensen, S. J., & Elsas, J. D. (2017). Microbial indicators for soil quality. Biology and Fertility of Solis, 54, 1‒10. doi: https://doi.org/10.1007/s00374-017-1248-3

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671‒675. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22930834

Segura, C. M., Gutiérrez, C. M., Ortiz, S. A., & Gómez, D. D. (2000). Suelos arcillosos de la zona oriente del Estado de México. Terra, 18(1), 33‒44. Retrieved from https://chapingo.mx/terra/contenido/18/1/art35-44.pdf

Tresch, S., Moretti, M., Le Bayon, R. C., Mäder, P., Zanetta, A., Frey, D., & Fliessbach, A. (2018). A gardener's influence on urban soil quality. Frontiers in Environmental Science, 6(25), 1‒17. doi: https://doi.org/10.3389/fenvs.2018.00025

Uhrin, P., & Supuka, J. (2016). Quality assessment of urban trees using growth visual and chlorophyll fluorescence indicators. Ekológia (Bratislava), 35(2), 160‒172. doi: https://doi.org/10.1515/eko-2016-0013

Valenzuela, N. L. M., Maillard, P., González, B. J. L., & González, C. G. (2013). Balance de carbohidratos en diferentes compartimentos vegetales de encino (Quercus petrea) y haya (Fagus sylvatica), sometidos a defoliación y sombra. Revista Chapingo Serie Zonas Áridas, 8(1), 33‒38. doi: https://doi.org/10.5154/r.rchsza.2012.06.027

Vidal-Beaudet, L., Forget-Caubel, V., & Grosbellet, C. (2015). Favour street tree root growth with high supplies of organic matter induces changes in urban soil properties. Acta Horticulturae, 1099, 943‒950. doi: https://doi.org/10.17660/ActaHortic.2015.1099.120

Vidal-Beaudet, L., Galopin, G., & Grosbellet, C. (2018). Effect of organic amendment for the construction of favourable urban soils for tree growth. European Journal of Horticultural Science, 83(3), 173‒186. doi: https://doi.org/10.17660/eJHS.2018/83.3.7

Watson, G. W., Hewitt, A. W., Custic, M., & Lo, M. (2014). The management of tree root systems in urban and suburban settings: A review of soil influence on root growth. Arboriculture & Urban Forestry, 40(4), 193‒217. Retrieved from http://joa.isa-arbor.com/articles.asp?JournalID=1&VolumeID=40&IssueID=4

Wiley, E., Casper, B. B., & Helliker, B. R. (2017). Recovery following defoliation involves shifts in allocation that favor storage and reproduction aver radial growth in black oak. Journal of Ecology, 105(2), 412‒424. doi: https://doi.org/10.1111/1365-2745.12672

Witham, F. H., Blaydes, D. F., & Devlin, R. M. (1971). Experiments in plant physiology. New York, USA: Van Nostrand Reinhold Company.

Zhang, C. J., Lim, S. H., Kim, J. W., Nah, G., Fischer, A., & Kim, D. S. (2016). Leaf chlorophyll fluorescence discriminates herbicide resistance in Echinochloa species. Weed Research, 56(6), 424‒433. doi: https://doi.org/10.1111/wre.12226

Zhang, Y., Xie, J. B., & Li, Y. (2016). Effects of increasing root carbon investment on the mortality and resprouting of Haloxylon ammodendron seedlings under drought. Plant Biology, 19(2), 1‒10. doi: https://doi.org/10.1111/plb.12511

Ziter, C., & MacDougall, S. A. (2013). Nutrients and defoliation increase soil carbon inputs in grassland. Ecology, 94(1), 106‒116. doi: https://doi.org/10.1890/11-2070.1

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente