Revista Chapingo Serie Ciencias Forestales y del Ambiente
Radial growth in Pinus patula Schltdl. & Cham. and its relationship with growing space and climatic factors
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Thinning
growth rings
competition
earlywood
latewood

How to Cite

Reyes-Cortés, L. M., Vargas-Hernández, J. J. ., Aldrete, A., Gómez-Guerrero, A., & Honorato-Salazar, J. A. (2020). Radial growth in Pinus patula Schltdl. & Cham. and its relationship with growing space and climatic factors. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 26(2), 157–172. https://doi.org/10.5154/r.rchscfa.2019.04.036

##article.highlights##

  • Growth rings were analyzed in wood samples from 13- and 23-year-old plantations.
  • In the 1995 plantation, ring growth was similar between thinned and unthinned plots.
  • In the young plantation, radial growth was greater in trees in the thinned plots.
  • The relationship of ring characteristics with temperature and rainfall was significant.
  • In both plantations, latewood width was positively associated with temperature.

Abstract

Introduction: Annual variation in growth ring characteristics has an impact on productivity and wood quality.
Objective: To evaluate radial growth in two Pinus patula Schltdl. & Cham. plantations of different ages and thinning intensity, as well as its relationship to interannual variation in temperature and rainfall.
Materials and methods: Growth ring characteristics were analyzed in wood samples from 13- and 23-year-old plantations, subjected to three thinning intensities (null, light and moderate). The characteristics were related to climate data during the years of ring formation using Pearson’s correlation analysis.
Results and discussion: In the 1995 plantation, ring characteristics did not show significant differences (P > 0.10) between plots with and without thinning, due to excessive competition and crown recession. Ring width, and early and latewood width, was significantly associated (P < 0.10; r ≥ 0.40) with average minimum temperature. In the 2005 plantation, trees from the thinned plots showed greater ring width, earlywood width and basal area increment than those from the unthinned plot. In this plantation only latewood width was positively associated (P < 0.10; r = 0.69) with temperature and negatively (P < 0.10; r = -0.61) with annual rainfall.
Conclusion: Growing space and competition intensity mainly affected ring and earlywood width. Environmental factors influence ring characteristics.

https://doi.org/10.5154/r.rchscfa.2019.04.036
PDF

References

Abe, H., Nakai, T., Utsumi, Y., & Kagawa, A. (2003). Temporal water deficit and wood formation in Cryptomeria japonica. Tree Physiology, 23(12), 859–863. doi: 10.1093/treephys/23.12.859

Akers, M. K., Kane, M., Zhao, D., Teskey, R. O., & Daniels, R. F. (2013). Effects of planting density and cultural intensity on stand and crown attributes of mid-rotation loblolly pine plantations. Forest Ecology and Management, 310, 468–475. doi: 10.1016/j.foreco.2013.07.062

Álvarez-Taboada, M. F., Barrio-Anta, M., Gorgoso-Varela, J., & Álvarez-González, J. G. (2003). Influencia de la competencia en el crecimiento en sección en Pinus radiata D. Don. Investigación Agraria: Sistema Recursos Forestales, 12(2), 25–35. Retrieved from https://recyt.fecyt.es/index.php/IA/article/view/2493/1874

Arenas-Castro, S., Fernández-Haeger, J., & Jordano-Barbudo, D. (2015). Estructura de edades, tamaños y crecimiento en una población local de piruétano (Córdoba, España). Ecosistemas, 24(2), 7–14. Retrieved from https://revistaecosistemas.net/index.php/ ecosistemas/article/view/1053

Auty, D., Moore, J., Achim, A., Lyon, A., Mochan, S., & Gardiner, B. (2018). Effects of early respacing on the density and microfibril angle of sitka spruce wood. Forestry: An International Journal of Forest Research, 91(3), 307–319. doi:10.1093/forestry/cpx004

Baldwin, V. C., Peterson, K. D., Clark III, A., Ferguson, R. B., Strub, M. R., & Bower, D. R. (2000). The effects of spacing and thinning on stand and tree characteristics of 38-year-old loblolly pine. Forest Ecology and Management, 137(1-3), 91–102. doi: 10.1016/S0378-1127(99)00340-0

Binkley, D. (2004). A hypothesis about the interaction of tree dominance and stand production through stand development. Forest Ecology and Management, 190(2-3), 265–271. doi: 10.1016/j.foreco.2003.10.018

Castelán-Lorenzo, M., & Arteaga-Martínez, B. (2009). Establecimiento de regeneración de Pinus patula Schl. et Cham., en cortas bajo el método de árboles padres. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 15(1), 49–57. Retrieved from https://www.chapingo.mx/revistas/forestales/contenido.php?seccion=numero&id_revista_numero=39

Chacón-de la Cruz, J. E., & Pompa-García, M. (2015). Response of tree radial growth to evaporation, as indicated by earlywood and latewood. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 21(1), 57–65. doi: 10.5154/r.rchscfa.2014.10.050

Cruickshank, M. G., & Filipescu, C. N. (2017). The interactive effect of root disease and climate on wood properties in halfsibling Douglas-fir families. Forest Ecology and Management, 392, 58–67. doi: 10.1016/j.foreco.2017.03.002

Daniels, R. F., Burkhart, H. E., & Clason, T. R. (1986). A comparison of competition measures for predicting growth of Ioblolly pine trees. Canadian Journal of Forest Research, 16(6), 1230–1237. doi: 10.1139/x86-218

Domec, J. C., & Gartner, B. L. (2002). How do water transport and water storage differ in coniferous earlywood and latewood? Journal of Experimental Botany, 53(379), 2369–2379. doi: 10.1093/jxb/erf100

Domínguez-Domínguez, M., Bravo, F., & del Río, M. (2006). Modelo del tamaño de copa de Pinus sylvestris L. en bosque del centro de España. Interciencia, 31(3), 168–175. Retrieved from http://www.redalyc.org/pdf/339/33911403.pdf

Düthorn, E., Schneider, L., Günther, B., Gläser, S., & Esper, J. (2016). Ecological and climatological signals in tree-ring width and density chronologies along a latitudinal boreal transect. Scandinavian Journal of Forest Research, 31(8), 750–757. Retrieved from https://www.tandfonline.com/doi/abs/10.1080/02827581.2016.1181201

García-Suárez, A. M., Butler, C. J., & Baillie, M. G. L. (2009). Climate signal in tree-ring chronologies in a temperate climate: A multi-species approach. Dendrochronologia, 27(3), 183–198. doi: 10.1016/j.dendro.2009.05.003

Gartner, B. L., North, E. M., Johnson, G. R., & Singleton, R. (2002). Effects of live crown on vertical patterns of wood density and growth in Douglas-fir. Canadian Journal of Forest Research, 32(3), 439–447. doi: 10.1139/x01-218

Guerra-Bugueño, E., Célis-Mosqueira, F., & Moreno-García, N. (2014). Efecto de la densidad de plantación en la rentabilidad de plantaciones de Eucalyptus globulus. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 20(1), 21–31. doi: 10.5154/r.rchscfa.2012.08.051

Haghshenas, M., Mohadjer, M. R. M., Attarod, P., Pourtahmasi, K., Feldhaus, J., & Sadeghi, S. M. M. (2016). Climate effect on tree-ring widths of Fagus orientalis in the Caspian forests, northern Iran. Forest Science and Technology, 12(4), 176–182. doi: 10.1080/21580103.2016.1144542

Hébert, F., Krause, C., Pierre-Yves, P., Achim, A., Prégent, G., & Ménétrier, J. (2016). Effect of tree spacing on tree level volume growth, morphology, and wood properties in a 25-year-old Pinus banksiana plantation in the boreal forest of Quebec. Forests, 7(11), 1–16. doi: 10.3390/f7110276

Hernández, L., & Castellanos, H. (2006). Crecimiento diamétrico arbóreo en bosques de Sierra de Lema, Guayana venezolana: Primeras evaluaciones. Interciencia, 31(11), 779–786. Retrieved from http://www.redalyc.org/articulo.oa?id=33912205

Koga, S., Zhang, S. Y., & Bégin, J. (2002). Effects of precommercial thinning on annual radial growth and wood density in balsam fir (Abies balsamea). Wood and Fiber Science, 34(4), 625–642. Retrieved from https://wfs.swst.org/index.php/wfs/article/viewFile/329/329

Larson, P. R. (1969). Wood formation and the concept of wood quality. Retrieved from https://www.fs.fed.us/nrs/pubs/other/1969/nc_1969_larson_001.pdf

Latham, P., & Tappeiner, J. (2002). Response of old-growth conifers to reduction in stand density in western Oregon forests. Tree Physiology, 22(2-3), 137–146. doi: 10.1093/treephys/22.2-3.137

Lebourgeois, F. (2000). Climatic signals in earlywood, latewood and total ring width of Corsican pine from western France. Annals of Forest Science, 57(2), 155–164. doi: 10.1051/forest:2000166

Macdonald, E., & Hubert, J. (2002). A review of the effects of silviculture on wood quality. Forestry, 75(2), 107–138. Retrieved from https://open.library.ubc.ca/cIRcle/collections/ undergraduateresearch/52966/items/1.0103111

McKeand, S., Mullin, T., Byram, T., & White, T. (2003). Deployment of genetically improved loblolly and slash pines in the south. Journal of Forestry, 101(3), 32–37. Retrieved from https://academic.oup.com/jof/article/101/3/32/4608659

Olivar, J., Bogino, S., Spiecker, H., & Bravo, F. (2012). Climate impact on growth dynamic and intra-annual density fluctuations in Aleppo pine (Pinus halepensis) trees of different crown classes. Dendrochronologia, 30(1), 35–47. doi: 10.1016/j.dendro.2011.06.001

Olivar, J., Rathgeber, C. B. K., Ordoñez, C., & Bravo, F. (2013). Influencia del clima en la densidad de la madera de pinos mediterráneos (Pinus halepensis y Pinus pinaster). In Sociedad Española de Ciencias Forestales (Ed.), 6° Congreso Forestal Español (pp. 1–13). España: Author. Retrieved from https://www.researchgate.net/publication/262270215_Influencia_del_clima_en_la_densidad_de_la_madera_de_pinos_mediterraneos_Pinus_halepensis_y_Pinus_pinaster

Pompa-García, M., & Camarero-Martínez, J. J. (2015). Potencial dendroclimático de la madera temprana y tardía de Pinus cooperi Blanco. Agrociencia, 49(2), 177–187. Retrieved from http://www.scielo.org.mx/pdf/agro/v49n2/v49n2a6.pdf

QGIS Development Team. (2002). QGIS Geographic Information System. Open source geospatial foundation project. Retrieved from https://docs.qgis.org/3.4/es/docs/user_manual/

Regent Instruments Inc. (2008). WinDENDRO™ An image analysis system for tree ring analysis. Quebec, Canadá: Author.

Rodríguez-Ortíz, G. (2010). Efecto de aclareos en el crecimiento de una plantación de Pinus patula Schl. et Cham. en Ixtlán, Oaxaca. Tesis doctoral, Colegio de Postgraduados, Montecillo. Texcoco, Estado de México, México. Retrieved from https://nanopdf.com/download/efecto-de-aclareos-en-el-crecimiento-de_pdf

Rossi, S., Morin, H., & Deslauriers, A. (2012). Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis. Journal of Experimental Botany, 63(5), 2117–2126. doi: 10.1093/jxb/err423

Salazar, G. J. G., Vargas, H. J. J., Jasso, M. J., Molina, G. J. D., Ramírez, H. C., & López, U. J. (1999). Variación en el patrón de crecimiento en altura de cuatro especies de Pinus en edades tempranas. Madera y Bosques, 5(2), 19–34. doi: 10.21829/myb.1999.521345

Santiago-García, W., Pérez-López, E., Quiñonez-Barraza, G., Rodríguez-Ortiz, G., Santiago-García, E., Ruiz-Aquino, F., & Tamarit-Urias, J. C. (2017). A dynamic system of growth and yield equations for Pinus patula. Forests, 8(12), 1–13. doi: 10.3390/f8120465

SAS Institute Inc. (2004). The SAS system for windows. Versión 9.4. Cary, NC, USA: Author.

Schimleck, L., Antony, F., Dahlen, J., & Moore, J. (2018). Wood and fiber quality of plantation-grown conifers: A summary of research with an emphasis on loblolly and radiata pine. Forests, 9(6), 1–16. doi: 10.3390/f9060298

Tong, Q. J., & Zhang, S. Y. (2005). Impact of initial spacing and precommercial thinning on jack pine tree growth and stem quality. Forestry Chronicle, 81(3), 418–428. doi: 10.5558/tfc81418-3

Wang, T., Hamann A., Spittlehouse, D., & Carroll, C. (2016). Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE, 11(6): e0156720. doi: 10.1371/journal.pone.0156720

Wilkinson, S., Ogée, J., Domec, J. C., Rayment, M., & Wingate, L. (2015). Biophysical modelling of intra-ring variations in tracheid features and wood density of Pinus pinaster trees exposed to seasonal droughts. Tree Physiology, 35(3), 305–318. doi: 10.1093/treephys/tpv010

Zhang, J., Gou, X., Pederson, N., Zhang, F., Niu, H., Zhao, S., & Wang, F. (2018). Cambial phenology in Juniperus przewalskii along different altitudinal gradients in a cold and arid region. Tree Physiology, 38(6), 840–852. doi: 10.1093/treephys/tpx160

Zhu, J. Y., Scott, C. T., Scallon, K. L., & Myers, G. C. (2007). Effects of plantation density on wood density and anatomical properties of red pine (Pinus resinosa Ait.). Wood and Fiber Science, 39(3), 502–512. Retrieved from https://www.fs.usda.gov/ treesearch/pubs/29256

Żywiec, M., Muter, E., Zielonka, T., Delibes, M., Calvo, G., & Fedriani, J. M. (2017). Long-term effect of temperature and precipitation on radial growth in a threatened thermo-Mediterranean tree population. Trees - Structure and Function, 31(2), 491–501. doi: 10.1007/s00468-016-1472-8

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente