Revista Chapingo Serie Ciencias Forestales y del Ambiente
Does fertilization hardening improve the morphometric and physiological characteristics of Pinus rudis Endl. seedlings?
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Watershed
Vernegà basin
Quercus suber
Pinus halepensis
unmanaged forest

How to Cite

Ávila-Angulo, M. L. ., Gómez-Guerrero, A. ., Aldrete, A., Vargas-Hernández, J. J. ., López-López, M. A. ., & Hernández-Ruiz, J. . (2019). Does fertilization hardening improve the morphometric and physiological characteristics of Pinus rudis Endl. seedlings?. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 26(1), 141–153. https://doi.org/10.5154/r.rchscfa.2019.04.031

##article.highlights##

  • Hardening was evaluated using three levels of P, K and soluble fertilizer in irrigation.
  • The hardening process did not change the morphometry of P. rudis seedlings.
  • Fertilization hardening in P. rudis increased the phosphorus concentration by 30 %.
  • The highest N, P and K contents were achieved with a 100 % increase in the basic dose (4-25-35).
  • Graphical vector analysis was useful in the analysis of the fertilization effect.

Abstract

Introduction: Forest management is necessary for forest conservation and the security of natural assets and people; however, forest management can have negative effects on some soil properties. Objective: To determine whether forest management in a Mediterranean forest basin, consisting of Quercus suber L. and Pinus halepensis Mill., causes increased runoff and eroded material at slope level.  Materials and methods: Seven land-use units were selected: a) dense forest (no management); b) recently managed cork oak forest, c) recently managed pine forest; d) cork oak forest with two years of management, e) pine forest with two years of management, f) bare terrain with herbaceous vegetation and (g) a forest road. In each area, four rainfall simulations were carried out from a height of 2 m, at a pressure of 1.7 kg·cm-2, equivalent to a rainfall intensity of 60 mm·h-1. An ANOVA was performed and significant differences were verified (post-hoc Tukey test, P < 0.05).  Results and discussion: Ten months after the hardening process, the seedlings had a root collar diameter of 4.8 to 5.5 mm, aerial dry weight of 4.2 to 4.4 g and root dry weight of 1.1 to 1.2 g. The doses of P, K and FS did not affect the morphometry of the plant, but did affect the concentration of nutrients. Vector analysis detected luxury nutrient consumption in the order P > N > K. The highest nutrient contents were achieved with SF at a level of 100 % above the basic dose (4-25-35).
Conclusion: There is no difference in the generation of runoff and erosion in the managed areas, both pine and cork oak, compared to dense or unmanaged forest.
https://doi.org/10.5154/r.rchscfa.2019.04.031
PDF

References

Andivia, E., Fernández, M., & Vázquez-Piqué, J. (2011). Autumn fertilization of Quercus ilex ssp. ballota (Desf.) Samp. nursery seedlings: effects on morpho-physiology and field performance. Annals of Forest Science, 68(3), 543–553. doi:10.1007/s13595-011-0048-4

Dumroese, R. K. (2003). Hardening fertilization and nutrient loading of conifer seedlings. In L. E. Riley, R. K. Dumroese, & T. D. Landis (Eds.), National Proceedings: Forest and Conservation Associations–2002 (pp. 31–36). Ogden, UT, USA: USDA Forest Service, Rocky Mountain Research Station. Retrieved from https://www.srs.fs.usda.gov/pubs/ja/ja_dumroese003.pdf

Escobar, R. R. (2012). Fases de cultivo: Endurecimiento. En L. T. Contardi, H. E. Gonda, G. Tolone, & J. Salimbeni (Eds.), Producción de plantas en viveros forestales (pp. 145–162). Buenos Aires, Argentina: Consejo Federal de Inversiones-Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP)-Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB).

Fernández, M., Marcos, C., Tapias, R., Ruiz, F., & López, G. (2007). Nursery fertilization affects the frost-tolerance and plant quality of Eucalyptus globulus Labill. cuttings. Annals of Forest Science, 64(8), 865–873. doi: https://doi.org/10.1051/forest:2007071

García-Pérez, J. L., Aldrete, A., López-Upton, J., Vargas-Hernández, J. J., & Prieto-Ruíz, J. A. (2015). Efecto de la condición ambiental y la fertilización en el preacondicionamiento de Pinus engelmannii Carr. en vivero. Revista Fitotecnia Mexicana, 38(3), 297–304. Retrieved from http://www.scielo.org.mx/scielo.php?pid=S0187-73802015000300008&script=sci_arttext&tlng=en

Grossnickle, S. C. (2005). Importance of root growth in overcoming planting stress. New Forests, 30(2-3), 273–294. doi: https://doi.org/10.1007/s11056-004-8303-2

Grossnickle, S. C., & MacDonald, J. E. (2018). Why seedlings grow: influence of plant attributes. New Forests, 49(1), 1–34. doi: https://doi.org/10.1007/s11056-017-9606-4

Guo, Z., Han, J., Li, J., Xu, Y., & Wang, X. (2019). Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PloS ONE, 14(1), e0211163. doi: https://doi.org/10.1371/journal.pone.0211163

Isaac, M. E., & Kimaro, A. A. (2011). Diagnosis of nutrient imbalances with vector analysis in agroforestry systems. Journal of Environmental Quality, 40(3), 860–886. doi: https://doi.org/10.2134/jeq2010.0144

Jackson, D. P., Dumroese, R. K., & Barnett, J. P. (2012). Nursery response of container Pinus palustris seedlings to nitrogen supply and subsequent effects on out planting performance. Forest Ecology and Management, 265, 1–12. doi: https://doi.org/10.1016/j.foreco.2011.10.018

Landis, T. D. (1989). Mineral nutrients and fertilization. In T. D. Landis, R. W. Tinus, S. S. McDonald, & J. P. Barnett (Eds.), The container tree nursery manual (vol. 4, pp. 1–67). Washington, DC, USA: U.S. Department of Agriculture, Forest Service.

Li, G., Wang, J., Oliet, J. A., & Jacobs, D. F. (2016). Combined pre-hardening and fall fertilization facilitates N storage and field performance of Pinus tabulaeformis seedlings. iForest-Biogeosciences and Forestry, 9(3), 483–489. doi: https://doi.org/10.3832/ifor1708-008

López-Bucio, J., Hernández-Abreu, E., Sánchez-Calderón, L., Nieto-Jacobo, M. F., Simpson, J., & Herrera-Estrella, L. (2002). Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiology, 129(1), 244–256. doi: https://doi.org/10.1104/pp.010934

López-López, M. Á., & Alvarado-López, J. (2010). Interpretación de nomogramas de análisis de vectores para diagnóstico nutrimental de especies forestales. Madera y Bosques, 16(1), 99–108. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-04712010000100007

Magaña, T. O. S., Torres, R. J. M., Rodríguez, F. C., Aguirre, D. H., & Fierros, G. A. M. (2008). Predicción de la producción y rendimiento de Pinus rudis Endl. en Aloapan, Oaxaca. Madera y Bosques, 14(1), 5–13. Retrieved from http://www.scielo.org.mx/pdf/mb/v14n1/v14n1a2.pdf

Mead, D. J., Scott, J. T., & Chang, S. X. (2010). Using vector analysis to understand temporal changes in understorey-tree competition in agroforestry systems. Forest Ecology and Management, 259(6), 1200–1211. doi: https://doi.org/10.1016/j.foreco.2010.01.010

Miller, B. D., & Timmer, V. (1994). Steady-state nutrition of Pinus resinosa seedlings: response to nutrient loading, irrigation and hardening regimes. Tree Physiology, 14(12), 1327–1338. doi: https://doi.org/10.1093/treephys/14.12.1327

Nambiar, E. S., & Fife, D. N. (1991). Nutrient retranslocation in temperate conifers. Tree Physiology, 9(1-2), 185–207. doi: https://doi.org/10.1093/treephys/9.1-2.185

Ostonen, I., Lõhmus, K., Helmisaari, H. S., Truu, J., & Meel, S. (2007). Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiology, 27(11), 1627–1634. doi: https://doi.org/10.1093/treephys/27.11.1627

Park, B. B., Park, G. E., & Bae, K. (2015). Diagnosis of plant nutrient and growth responses on fertilization with vector analysis and morphological index. Forest Science and Technology, 11(1), 1–10. doi: https://doi.org/10.1080/21580103.2014.931257

Puértolas, J., Gil, L., & Pardos, J. A. (2003). Effects of nutritional status and seedling size on field performance of Pinus halepensis planted on former arable land in the Mediterranean basin. Forestry, 76(2), 159–168. doi: https://doi.org/10.1093/forestry/76.2.159

Puértolas, J., Gil, L., & Pardos, J. A. (2005). Effects of nitrogen fertilization and temperature on frost hardiness of Aleppo pine (Pinus halepensis Mill.) seedlings assessed by chlorophyll fluorescence. Forestry, 78(5), 501–511. doi: https://doi.org/10.1093/forestry/cpi055

Ramírez-Cuevas, Y., & Rodríguez, T. D. A. (2010). Resistencia a bajas temperaturas en Pinus hartwegii sometido a diferentes tratamientos con potasio. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 16(1), 79–85. doi: https://doi.org/10.5154/r.rchscfa.2009.09.032

Robles, V. F., Rodríguez, T. D. A., & Villanueva, M. A. (2017). Calidad de planta y supervivencia en reforestación de Pinus montezumae Lamb. Revista Mexicana de Ciencias Forestales, 8(42), 55–76. Retrieved from http://www.scielo.org.mx/pdf/remcf/v8n42/2007-1132-remcf-8-42-00055.pdf

Rueda-Sánchez, A., Benavides-Solorio, J. de D., Sáenz-Reyes, J. T., Prieto-Ruiz, J. A., Muñoz, F. H. J., & Orozco, G. G. (2010). Calidad de planta producida en los viveros forestales de Jalisco y Nayarit. Revista Mexicana de Ciencias Forestales, 5(22), 58–73. Retrieved from http://www.scielo.org.mx/pdf/remcf/v5n22/v5n22a5.pdf

Salifu, K., & Timmer, V. (2003). Optimizing nitrogen loading of Picea mariana seedlings during nursery culture. Canadian Journal of Forest Research, 33(7), 1287–1294. doi: https://doi.org/10.1139/x03-057.

Sánchez-Aguilar, H., Aldrete, A., Vargas-Hernández, J., & Ordaz-Chaparro, V. (2016). Influencia del tipo y color de envase en el desarrollo de plantas de pino en vivero. Agrociencia, 50(4), 481–492. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952016000400481

Schlesinger, W. H., & Bernhardt, E. S. (2013). Biogeochemistry: An analysis of global change (3rd ed.). San Diego, California, USA: Academic Press.

Statistical Analysis Systems Institute (2002). The SAS system for windows, release 9.0. Cary, NC, USA: Author.

Trubat, R., Cortina, J., & Vilagrosa, A. (2008). Short-term nitrogen deprivation increases field performance in nursery seedlings of Mediterranean woody species. Journal of Arid Environments, 72(6), 879–890. doi: https://doi.org/10.1016/j.jaridenv.2007.11.005

Vilagrosa, A., Villar-Salvador, P., & Puértolas, J. (2006). El endurecimiento en vivero de especies forestales mediterráneas. En J. Cortina, J. L. Peñuelas, J. Puértolas, R. Savé, & A. Vilagrosa (Eds.), Calidad de planta forestal para la restauración en ambientes mediterráneos: estado actual de conocimientos (pp. 119–140). España: Ministerio de Medio Ambiente. Retrieved from https://www.researchgate.net/publication/256669382_El_endurecimiento_en_vivero_de_especies_forestales_mediterraneas

Villar, P. (2003). Importancia de la calidad de planta en los proyectos de revegetación. En J. M. Nicolau-Ibarra, J. M. Rey-Benayas, & T. Espigares (Eds.), Restauración de ecosistemas mediterráneos (pp. 65–86). España: Universidad de Alcalá. Retrieved from https://dialnet.unirioja.es/servlet/articulo?codigo=769094

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente