Revista Chapingo Serie Ciencias Forestales y del Ambiente
Crecimiento y metabolitos secundarios de Stevia pilosa Lag. en tres condiciones edafoclimáticas en el estado de Hidalgo, México
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

desarrollo in situ
Mineral del Chico
índices de crecimiento
concentración nutrimental
terpenos

Cómo citar

Romero-Figueroa, J. C. ., Rodríguez-Mendoza, M. de las N., Gutiérrez-Castorena, M. del C., Escalante-Estrada, J. A. S., Peña-Valdivia, C. B., & Cueto-Wong, J. A. . (2020). Crecimiento y metabolitos secundarios de Stevia pilosa Lag. en tres condiciones edafoclimáticas en el estado de Hidalgo, México. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 26(2), 173–187. https://doi.org/10.5154/r.rchscfa.2019.04.026

##article.highlights##

  • Se analizó el desarrollo de Stevia pilosa de Huasca de Ocampo, Mineral del Chico y Mineral del Monte.
  • Mineral del Chico (clima húmedo y suelo de mayor fertilidad) tuvo plantas con mayor crecimiento.
  • El contenido total de fenoles y flavonoides fue similar en todas las plantas de S. pilosa.
  • Las plantas de Mineral de Chico y Huasca de Ocampo tuvieron mayor concentración nutrimental.
  • Las plantas de Huasca de Ocampo (clima seco) tuvieron mayor contenido de terpenos.

Resumen

Introducción: La distribución de Stevia pilosa Lag. y su contenido de metabolitos con propiedades terapéuticas se han documentado; sin embargo, no hay reportes del desarrollo in situ y de los factores que influyen en el crecimiento de la planta.
Objetivo: Cuantificar el crecimiento, contenido fitoquímico y nutrimental de plantas de S. pilosa in situ bajo tres condiciones edafoclimáticas del estado de Hidalgo, México.
Materiales y métodos: En los sitios denominados Huasca de Ocampo (HO), Mineral del Chico (MCh) y Mineral del Monte (MM), con clima, suelo y altitud diferentes, se colectó suelo y se hicieron tres muestreos de plantas para dar seguimiento al desarrollo de la especie. En el último muestreo se cuantificó la concentración nutrimental y fitoquímica.
Resultados y discusión: La cantidad de plantas varió en función de los sitios de muestreo, siendo mayor en MCh (12 plantas·m-2). La tasa de crecimiento y el área foliar se relacionaron directamente. En plantas de MCh y MM, la fotosíntesis neta solo abasteció la demanda en los dos primeros muestreos, donde hubo acumulación significativa (P ≤ 0.05) de materia, mientras que en HO abasteció todos los muestreos. Las plantas de MCh y HO tuvieron mayor concentración nutrimental (P ≤ 0.05). Las plantas de MCh y MM presentaron mayor concentración de fenoles y flavonoides, y las de HO sobresalieron en terpenos totales.
Conclusiones: Las condiciones edafoclimáticas en los tres sitios del estado de Hidalgo modificaron la presencia, forma de crecimiento y desarrollo de S. pilosa.

https://doi.org/10.5154/r.rchscfa.2019.04.026
PDF

Citas

Ahmad, N., Rab, A., & Ahmad, N. (2016). Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert). Journal of Photochemistry & Photobiology, B: Biology, 154, 51–56. doi: https://doi.org/10.1016/j.jphotobiol.2015.11.015

Álvarez, G. R., Torres, V. J., Román, L., Hernández, J., García, R. C. C., & Nathan, P. J. (2005). Absolute configuration of the a-methylbutyryl residue in longipinene derivatives from Stevia pilosa. Phytochemestry, 66(6), 639–642. doi: https://doi.org/10.1016/j.phytochem.2004.12.001

Azarpour, E., Moraditochaee, M., & Bozorgi, H. R. (2014). Effect of nitrogen fertilizer management on growth analysis of rice cultivars. International Journal of Biosciences, 4(5), 35–47. doi: https://doi.org/10.12692/ijb/4.5.35-47

Borda, M. D., Pardo, J. M. G., Montaña, J. S. L., & Martínez, M. M. (2011). Influencia de la materia orgánica y Azotobacter nigricans en un cultivo de Stevia rebaudiana. Universitas Scientiarum, 16(3), 282–293. doi: https://doi.org/10.11144/javeriana.CS16-3.ioom

Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen-total. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Chemical and microbiological properties (2nd ed., pp. 595–624). Madison, WI, USA: American Society of Agronomy-Soil Science Society of America. doi: https://doi.org/10.2134/agronmonogr9.2.2ed.c31

Cabrera, H. M. (2002). Respuestas ecofisiológicas de plantas en ecosistemas de zonas con clima mediterráneo y ambientes de alta montaña. Revista Chilena de Historia Natural, 75(3), 625–637. doi: https://doi.org/10.4067/S0716-078X2002000300013

Calderón, G., & Rzedowski, J. (2005). Flora fanerogámica del Valle de México. México: Instituto de Ecología, A. C. - Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Retrieved from http://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/Flora_del_Valle_de_Mx1.pdf

Cannon, J., Li, D., Wood, S. G., Owen, N. L., Gromova, A., & Lutsky, V. (2001). Investigation of secondary metabolites in plants. A general protocol for undergraduate research in natural products. Journal Chemistry Education, 78(9), 1234–1237. doi: https://doi.org/10.1021/ed078p1234

Casierra-Posada, F., & Peña-Olmos, J. E. (2015). Modificaciones fotomorfogénicas inducidas por la calidad de la luz en plantas cultivadas. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39, 84–92. doi: https://doi.org/10.18257/raccefyn.276

Cerda-Garcìa-Rojas, C. M., & Pereda-Miranda, R. (2001). The phytochemistry of Stevia: a general survey. In A. D. Kinghorn (Ed.), Stevia. The genus Stevia (vol. 19, pp. 87–118). London: CRC Press. Retrieved from https://www.taylorfrancis.com/books/e/9780429217487

Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoids content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178–182. Retrieved from https://search.proquest.com/openview/8ed5f78aa3317908039c7a8ca3740050/1?pq-origsite=gscholar&cbl=906352

Cui, T., Nakamura, K., Tian, S., Kayahara, H., & Tian, Y. (2006). Polyphenolic content and physiological activities of Chinese hawthorn extracts. Bioscience, Biotechnology, and Biochemistry, 70(12), 2948–2956. doi: https://doi.org/10.1271/bbb.60361

García, R. C., & Pereda, M. R. (2002). The phytochemistry of the Stevia: a general survey. In A. D. Kinghorn (Ed.), Stevia: The genus Stevia; medicinal and aromatic plants-industrial profiles (vol. 19, pp. 86–118). London, UK: Ed. Taylor & Francis.

Goyal, S., Samsher, K., & Goyal, R. K. (2010). Stevia (Stevia rebaudiana) a bio-sweetener: a review. International Journal of Food Science and Nutrition, 61(1), 1–10. doi: https://doi.org/10.3109/09637480903193049

Harborne, J. B. (1998). Phytochemical methods. A guide to modern techniques of plant analysis (3rd. ed.). London, UK: Chapman & Hall.

Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10(A), 4–10. doi: https://doi.org/10.1016/j.wace.2015.08.001

Hernández, L. R., Catalan, C. A. N., & Joseph-Nathan, N. P. (1998). The chemistry of the genus Stevia (Asteraceae). Revista de la Academia Colombiana de Ciencias Exactas, Física y Naturales, 22(83), 229–279. Retrieved from https://www.researchgate.net/publication/270511131_THE_CHEMISTRY_OF_THE_GENUS_STEVIA_ASTERACEAE

Hohmann, M. S. N., Longhi-Balbinot, D. T., Guazelli, C. F. S., Navarro, S. A., Zarpelon, A. C., Casagrande, R., …Verri, W. A. (2016). Sesquiterpene lactones: structural diversity and perspectives as antiinflammatory molecules. In Atta-ur-Rahman (Ed.), Studies in natural products chemistry (pp. 243–264). New York, NY, USA: Elsevier.

Hunt, R. (2017). Growth analysis, individual plants. In B. Thomas, D. J. Murphy, & B. G. Murray (Eds.), Encyclopedia of applied plant sciences (2nd. ed., pp. 579–588). London, UK: Academic Press.

Instituto Nacional de Estadística y Geografía (INEGI). (2015). División municipal del estado de Hidalgo. Retrieved June 6, 2017 from http://cuentame.inegi.org.mx/monografias/informacion/hgo/territorio/div_municipal.aspx?tema=me&e=13

Gaweł-Bęben, K., Bujak, T., Nizioł-Łukaszewska, Z., Antosiewicz, B., Jakubczyk, A., Karaś, M., & Rybczyńska, K. (2015). Stevia rebaudiana Bert. leaf extracts as a multifunctional source of natural antioxidants. Molecules, 20(4), 5468–5486 doi: https://doi.org/10.3390/molecules20045468

Jarma, O. A. J., Combatt, C., & Cleves, C. (2010). Aspectos nutricionales y metabolismo de Stevia rebaudiana (Bertoni): una revisión. Agronomía Colombiana, 28(2), 199–208. Retrieved from http://www.scielo.org.co/pdf/agc/v28n2/v28n2a09.pdf

Jarma, A., Rengifo, T., & Araméndiz-Tatis, H. (2006). Fisiología de estevia (Stevia rebaudiana) en función de la radiación en el Caribe colombiano. II. Análisis de crecimiento. Agronomía Colombiana, 24(1), 38–47. Retrieved from https://www.redalyc.org/articulo.oa?id=180316238005

Khiraoui, A., Bakha, M., Amchra, F., Ourouadi, S., Booulli, A., Al-Faiz, C., & Hasib, A. (2017). Nutritional and biochemical properties of natural sweeteners of six cultivars of Stevia rebaudiana Bertoni leaves grown in Morocco. Journal of Materials and Environmental Sciences, 8(3), 1015–1022. Retrieved from http://www.jmaterenvironsci.com /

Kumar, P. P., Mahajan, M., Prasad, R. V., Pathania, V., Singh, B., & Singh, P. A. (2015). Harvesting regimes to optimize yield and quality in annual and perennial Stevia rebaudiana in alloxan-induced diabetic rats. Pharmacognosy Research, 2(4), 258–263. doi: https://doi.org/10.4103/0974-8490.69128

Magangana, T. P., & Makunga. N. P. (2016). The effect of various factors on seed germination and the influence of abiotic stresses on growth productivity, physiology and differences in metabolite profiles (diterpene glycosides) of Stevia rebaudiana Bertoni. South African Journal of Botany, 103, 324–325. doi: https://doi.org/10.1016/j.sajb.2016.02.080

Mishra, G., & Kumar, R. (2016). Plant litter decomposition: drivers insight to the ecological process. European Journal of Biological Research, 6(3), 176–185. doi: https://doi.org/10.5281/zenodo.58752

Molina, M. J. L., Galván, V. R., Patiño, S. A., & Fernández, N. R. (2012). Plantas medicinales y listado florístico preliminar del municipio de Huasca de Ocampo, Hidalgo, México. Polibotánica, 34, 239–271. Retrieved from http://www.redalyc.org/pdf/621/62123051012.pdf

Morales, M. E. J., Morales-Rosales, E. J., Díaz-López, E., Cruz-Luna, A. J., Medina-Arias, N., & Guerrero-De la Cruz, M. (2015). Tasa de asimilación neta y rendimiento de girasol en función de urea y urea de liberación lenta. Agrociencia, 49(2), 163–176. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952015000200005

Nassi, D. N., Roncucci, N. N., Triana, F., Tozzini, C., & Bonari, E. (2011). Productivity of giant reed (Arundo donax L.) and miscanthus (Miscanthus x giganteus Greef et deuter) as energy crops: growth analysis. Italian Journal of Agronomy, 6(3), 141–147. doi: https://doi.org/10.4081/ija.2011.e22

Ortiz-Solorio, C. A. (2019). Edafología. México: Editorial Trillas.

Pereira, C., Storck, L., Lopes, S., Martin, T. N., & Bisognin, D. A. (2016). Dry biomass and glycosides yield from Stevia rebaudiana leaves under different harvesting times. Bioscience Journal, 32(6), 1462–1471. doi: https://doi.org/10.14393/BJ-v32n6a2016-31574

Pommerening, A., & Muszta, A. (2016). Relative plant growth revisited: Towards a mathematical standardisation of separate approaches. Ecological Modelling, 320, 383–392. doi: https://doi.org/10.1016/j.ecolmodel.2015.10.015

Quero, J. L., Villar, R., Marañón, T., Zamora, R., Vega, D., & Sack, L. (2008). Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Functional Plant Biology, 35(8), 725–737. doi: https://doi.org/10.1071/FP08149

Rather, H. A., Singh S., Suhail, B., & Patel, G. (2019). Stevia (Meethi Patti) as an alternative form of sugar. Journal of Drug Delivery and Therapeutics, 9(2), 453–457. Retrieved from https://www.researchgate.net/publication/332256012_Stevia_Meethi_Patti_as_an_alternative_form_of_sugar

Rincón, G. N., Olarte, Q. M. A., & Pérez, N. J. C. (2012). Determinación del área foliar en fotografías tomadas con una cámara Web, un teléfono celular o una cámara semiprofesional. Revista Facultad Nacional de Agronomía Medellín, 65(1), 6399–6405. Retrieved from http://www.redalyc.org/articulo.oa?id=179924340010

Romero-Figueroa, J. C., Rodríguez-Mendoza, M. N., Escalante-Estrada, J. A. S., Gutiérrez-Castorena, M. C., Peña-Valdivia, C. B., Cueto-Wong, J., & Burguete-Hernández, E. (2017). Dinámica de crecimiento de Stevia cultivada en sustratos orgánicos en invernadero. Revista Fitotecnia Mexicana, 40(3), 341–350. Retrieved from https://www.revistafitotecniamexicana.org/documentos/40-3/11r.pdf

Sampaio, B. L., Edrada-Ebel, R. A., & Da Costa, F. B. (2016). Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Scientific Reports, 6, 1–14. doi: https://doi.org/10.1038/srep29265

Servicio Meteorológico Nacional (SMN). (2010). Información climatológica por estado. Retrieved June 2, 2017 from http://smn.cna.gob.mx/es/informacion-climatologica-ver-estado?estado=hgo

Soejima, A., Tanabe, A. S., Takayama, I., Kawahara, T., Watanabe, K., Nakazawa, M., … Yahara, T. (2017). Phylogeny and biogeography of the genus Stevia (Asteraceae: Eupatorieae): an example of diversification in the Asteraceae in the new world. Journal of Plant Research, 130(6), 953–972. doi: https://doi.org/10.1007/s10265-017-0955-z

Tholl, D., Chen, F., Petri, J., Gershenzon, J., & Pichersky, E. (2005). Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Journal Plant, 42(5), 757–771. doi: https://doi.org/10.1111/j.1365-313X.2005.02417.x

Van Reeuwijk, L. (2002). Procedures for soil analysis (6th. ed.). The Netherlands: International Soil Reference and Information Centre-Food and Agriculture Organization of the United Nations. Retrieved from https://www.isric.org/sites/default/files/ISRIC_TechPap09.pdf

Villavicencio, M. A., & Pérez, E. B. (2006). Plantas útiles del estado de Hidalgo (1.a ed.) Pachuca, México: Universidad Autónoma del Estado de Hidalgo.

Villagómez-Flores, E., Hinojosa-Espinosa, O., & Villaseñor, J. L. (2018). The genus Stevia (Eupatorieae, Asteraceae) in the state of Morelos, Mexico. Acta Botánica Mexicana, 125, 1–35. doi: https://doi.org/10.21829/abm125.2018.1315

Wahid, A. M., Farooq, I., Hussain, R., Rasheed R., & Galani S. (2012). Responses and management of heat stress in plants. In P. Ahmad & M. N. V. Prasad (Eds.), Environmental adaptations and stress tolerance of plants in the era of climate change (pp. 135–137). New York, USA: Springer.

Waterman, P. G., & Mole, S. (1994). Analysis of phenolic plant metabolites (Methods in Ecology). Oxford, UK: Blackwell Scientific Publications.

Wright, I. J., Reich, P. B., & Westoby, M. (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15(4), 423–434. doi: https://doi.org/10.1046/j.0269-8463.2001.00542.x

Zaman, M. M., Chowdhury, M. A. H., & Chowdhury, T. (2015). Growth parameters and leaf biomass yield of stevia (Stevia rebaudiana, Bertoni) as influenced by different soil types of Bangladesh. Journal of the Bangladesh Agricultural University, 13(1), 31–37. doi: https://doi.org/10.3329/jbau.v13i1.28708

Zhao, Y. H., Jia, X., Wang, W. K., Liu, T., Huang, S. P., & Yang, M. Y. (2016). Growth under elevated air temperature alters secondary metabolites in Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils. Science of the Total Environment, 565, 586–594. doi: https://doi.org/10.1016/j.scitotenv.2016.05.058

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente