Revista Chapingo Serie Ciencias Forestales y del Ambiente
An approximate height growth and site index model for Quercus sideroxyla Bonpl. in mixed- species stands of Durango, Mexico
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

growth model
dominant height
generalized algebraic difference approach
current annual increment
height growth trajectories

How to Cite

Quiñonez-Barraza G., Zhao, D., de los Santos-Posadas, H. M., & Corral-Rivas, J. J. (2019). An approximate height growth and site index model for Quercus sideroxyla Bonpl. in mixed- species stands of Durango, Mexico . Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 26(1), 53–69. https://doi.org/10.5154/r.rchscfa.2019.03.025

##article.highlights##

  • The current annual increment in height helps to estimate the age of height-diameter pairs.
  • The approximation of age in taper analysis helps to reconstruct growth trajectories.
  • ADA and GADA equations can model height growth of Q. sideroxyla.
  • Site index equations were applied to the height growth of Q. sideroxyla.

Abstract

Introduction: Predictions of dominant or co-dominant height are an important element in planning forest management with timber production objectives. Objective: To develop dominant height growth and site index (SI) equations for Quercus sideroxyla Bonpl.
Materials and methods: The height current annual increment model was fitted, and the age of the sections was estimated from a database of 29 stem-mapped plots. A taper analysis data of 37 trees was also used to reconstruct dominant height growth trajectories. Three equations based on algebraic difference approach (ADA; one anamorphic and two polymorphic) and an equation based on generalized algebraic difference approach (GADA) were used to simultaneously model the dominant height and SI. Results and discussion: The ADA polymorphic equations were statistically better than the anamorphic equation, according to the adjusted coefficient of determination, root mean square error, mean bias, Akaike’s information criterion and log-likelihood; however, the GADA equation was better than the ADA equations. The growth curves were biologically realistic and showed SI classes at a base age of 60 years. Conclusions: The developed equations can be used for decision making in forest management when Q. sideroxyla shows dominance over Pinus species and the main objective is timber production.
https://doi.org/10.5154/r.rchscfa.2019.03.025
PDF

References

Allen, M. G., & Burkhart, H. E. (2015). A comparison of alternative data sources for modeling site index in loblolly pine plantations. Canadian Journal of Forest Research, 45(8), 1026–1033. doi: https://doi.org/10.1139/cjfr-2014-0346

Antón-Fernández, C., Mola-Yudego, B., Dalsgaard, L., & Astrup, R. (2016). Climate-sensitive site index models for Norway. Canadian Journal of Forest Research, 46(6), 794–803. doi: https://doi.org/10.1139/cjfr-2015-0155

Bailey, R. L., & Clutter, J. L. (1974). Base-age invariant polymorphic site curves. Forest Science, 20(2), 155–159. doi: https://doi.org/https://doi.org/10.1093/forestscience/20.2.155

Bechtold, W. A. (2003). Crown position and light exposure classification–An alternative to field-assigned crown class. North Journal of Applied Forest, 20(4), 154–160. doi: https://doi.org/10.1093/njaf/20.4.154

Cieszewski, C. J., & Bailey, R. L. (2000). Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. Forest Science, 46(1), 116–126. doi: https://doi.org/10.1093/forestscience/46.1.116

Clutter, J. L., Fortson, J. C., Pienaar, L. V., Brister, G. H., & Bailey, R. L. (1983). Timber management: a quantitative approach. New York, NY, USA: John Wiley & Sons, Inc.

Costa, G. C., Calegario, N., Araújo, A., Pereira, J., & Garcia, H. (2018). Site index curves in thinned and non-thinned eucalyptus stands. Forest Ecology and Management, 408, 36–44. doi: https://doi.org/10.1016/j.foreco.2017.10.036

David, H. C., Péllico, N. S., Arce, J. E., Dalla, C. A. P., Marinheski, F. A., & Behling, A. (2015). Updating of dominant height growth modeling and site index of Pinus taeda L. in southern Brazil. Australian Journal of Basic and Applied Sciences, 9(2), 115–125. Retrieved from https://pdfs.semanticscholar.org/6147/356417bf9e6a5f5387206569837f623825c1.pdf?_ga=2.73391632.2018131849.1569520467-1724316666.1569520467

del Río, M., Pretzsch, H., Alberdi, I., Bielak, K., Bravo, F., Brunner, A., . . . von Lüpke, N. (2016). Characterization of the structure, dynamics, and productivity of mixed-species stands: review and perspectives. European Journal of Forest Research, 135(1), 23–49. doi: https://doi.org/10.1007/s10342-015-0927-6

Fraver, S., Bradford, J. B., & Palik, B. J. (2011). Improving tree age estimates derived from increment cores: A case study of red pine. Forest Science, 57(2), 164–170. doi: https://doi.org/10.1093/forestscience/57.2.164

García, E. (2004). Modificaciones al sistema de clasificación climática de Kóppen (5.a ed.). México: UNAM.

García, O. (2011). Dynamical implications of the variability representation in site-index modelling. European Journal of Forest Research, 130(4), 671–675. doi: https://doi.org/10.1007/s10342-010-0458-0

Kahriman, A., Sönmez, T., & Gadow, K. v. (2018). Site index models for Calabrian pine in the central Mediterranean region of Turkey. Journal of Sustainable Forest, 37(5), 459–474. doi: https://doi.org/10.1080/10549811.2017.1421086

Meadows, J. S., Burkhardt, E., Johnson, R. L., & Hodges, J. D. (2001). A numerical rating system for crown classes of southern hardwoods. Southern Journal of Applied Forestry, 25(4), 154–158. Retrieved from https://www.srs.fs.usda.gov/pubs/ja/ja_meadows_009.pdf

Pinheiro, J., & Bates, D. (2000). Mixed-effects models in S and S-PLUS. Statistics and computing. New York, NK, USA: Springer.

Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2015). nlme: Linear and nonlinear mixed effects models. R package version 3.1–120 Retrieved from https://cran.r-project.org/web/packages/nlme/index.html

Pukkala, T., & Gadow, K. (2011). Continuous cover forestry (vol. 23). New York, NY, USA: Springer Science & Business Media.

Quiñonez-Barraza, G., De los Santos-Posadas, H. M., Cruz-Cobos, F., Velázquez-Martínez, A., Ángeles-Pérez, G., & Ramírez-Valverde, G. (2015). Site index with complex polymorphism of forest stands in Durango, Mexico. Agrociencia, 49(4), 439–454. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952015000400007

Quiñonez-Barraza, G., García-Espinoza, G. G., & Aguirre-Calderón, O. A. (2018). How to correct the heteroscedasticity and autocorrelation of residuals in taper and height growth models? Revista Mexicana de Ciencias Forestales, 9(49), 28–59. doi: https://doi.org/https://doi.org/10.29298/rmcf.v9i49.151

Quiñonez-Barraza, G., Zhao, D., de los Santos-Posadas, H. M., Santiago-García, W., Tamarit-Urias, J. C., & Nájera-Luna, J. A. (2019). Compatible taper, volume, green weight, biomass and carbon concentration system for Quercus sideroxyla Bonpl. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 25(1), 49–69. doi: https://doi.org/10.5154/r.rchscfa.2018.06.050

Quiñonez-Barraza, G., Tamarit-Urias, J. C., Martínez-Salvador, M., García-Cuevas, X., de los Santos-Posadas, H. M., & Santiago-García, W. (2018). Maximum density and density management diagram for mixed-species forests in Durango, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 24(1), 73–90. doi: https://doi.org/10.5154/r.rchscfa.2017.09.056

Quiñonez-Barraza, G., Zhao, D., De Los Santos Posadas, H. M., & Corral-Rivas, J. J. (2018). Considering neighborhood effects improves individual DBH growth models for natural mixed-species forests in Mexico. Annals of Forest Science, 75(3), 1–11. doi: https://doi.org/10.1007/s13595-018-0762-2

R Development Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Richards, F. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10(2), 290–301. Retrieved from https://www.jstor.org/stable/23686557

Rodríguez-Carrillo, A., Cruz-Cobos, F., Vargas-Larreta, B., & Hernández, F. J. (2015). Compatible dominant height-site index model for juniper (Juniperus deppeana Steud.). Revista Chapingo Serie Ciencias Forestales y del Ambiente, 21(1), 97–108. doi: https://doi.org/10.5154/r.rchscfa.2014.09.041

Rozas, V. (2003). Tree age estimates in Fagus sylvatica and Quercus robur: testing previous and improved methods. Plant Ecology, 167(2), 193–212. doi: https://doi.org/10.1023/A:1023969822044

Seki, M., & Sakici, O. E. (2017). Dominant height growth and dynamic site index models for Crimean pine in Kastamonu-Taşköprü region of Turkey. Canadian Journal of Forest Research, 47(11), 1441–1449. doi: https://doi.org/10.1139/cjfr-2017-0131

Sharma, M., & Parton, J. (2018). Climatic effects on site productivity of red pine plantations. Forest Science, 64(5), 544–554. doi: https://doi.org/10.1093/forsci/fxy013

Sharma, M., & Reid, D. E. B. (2018). Stand height/site index equations for jack pine and black spruce trees grown in natural stands. Forest Science, 64(1), 33–40. doi: https://doi.org/10.5849/FS-2016-133

Sharma, M., Subedi, N., Ter-Mikaelian, M., & Parton, J. (2015). Modeling climatic effects on stand height/site index of plantation-grown jack pine and black spruce trees. Forest Science, 61(1), 25–34. doi: https://doi.org/10.5849/forsci.13-190

Torres-Rojo, J. M., Moreno-Sánchez, R., & Mendoza-Briseño, M. A. (2016). Sustainable forest management in Mexico. Current Forestry Reports, 2(2), 93–105. doi: https://doi.org/10.1007/s40725-016-0033-0

Vargas-Larreta, B., Corral-Rivas, J. J., Aguirre-Calderón, O. A., López-Martínez, J. O., de los Santos-Posadas, H. M., Zamudio-Sánchez, F. J., . . . Aguirre-Calderón, C. G. (2017). SiBiFor: Forest Biometric System for forest management in Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23(3), 437–455. doi: https://doi.org/10.5154/r.rchscfa.2017.06.040

Watt, M. S., Dash, J. P., Bhandari, S., & Watt, P. (2015). Comparing parametric and non-parametric methods of predicting Site Index for radiata pine using combinations of data derived from environmental surfaces, satellite imagery and airborne laser scanning. Forest Ecology and Management, 357, 1–9. doi: https://doi.org/10.1016/j.foreco.2015.08.001

Westfall, J. A., Hatfield, M. A., Sowers, P. A., & O'Connell, B. M. (2017). Site index models for tree species in the Northeastern United States. Forest Science, 63(3), 283–290. doi: https://doi.org/10.5849/FS-2016-090

Yue, C., Kahle, H-P., von Wilpert, K., & Kohnle, U. (2016). A dynamic environment-sensitive site index model for the prediction of site productivity potential under climate change. Ecological Modelling, 337, 48–62. doi: https://doi.org/10.1016/j.ecolmodel.2016.06.005

Yue, C., Mäkinen, H., Klädtke, J., & Kohnle, U. (2014). An approach to assessing site index changes of Norway spruce based on spatially and temporally disjunct measurement series. Forest Ecology and Management, 323, 10–19. doi: https://doi.org/10.1016/j.foreco.2014.03.031

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente