Revista Chapingo Serie Ciencias Forestales y del Ambiente
Biomass and growth of Pinus cembroides Zucc. and Pinus orizabensis D. K. Bailey & Hawksworth in response to water deficit
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

pinyon pines
species provenance
species selection
drought

How to Cite

Alva-Rodríguez, S., López-Upton, J., Vargas-Hernández, J. J., & Ruiz-Posadas, L. del M. (2019). Biomass and growth of Pinus cembroides Zucc. and Pinus orizabensis D. K. Bailey & Hawksworth in response to water deficit. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 26(1), 71–83. https://doi.org/10.5154/r.rchscfa.2019.02.015

##article.highlights##

  • Growth of Pinus cembroides and P. orizabensis differs in normal moisture and edaphic drought.
  • The ability to resist drought was different among provenances.
  • The root was the most sensitive variable to water deficit.
  • In P. cembroides, the greatest growth occurred in seedlings from the most arid population.
  • En P. orizabensis, the population with the highest growth was the one from the highest elevation.

Abstract

Introduction: Selection of plants not adapted to the environment and low water availability are factors that limit the success of reforestation.  Objective: To determine drought resistance in plants from three provenances of Pinus cembroides Zucc. and three of P. orizabensis D. K. Bailey and Hawksworth. Materials and methods: An irrigation experiment (38 to 45 % moisture) and a drought experiment (30 to 36 % moisture) were established for 11 months, starting with 16-month-old plants. A split-plot experimental design consisting of two moisture environments (irrigation and drought) with replicates (four blocks) nested within them was used; in each block six populations (three per species) with 10 plants per experimental unit were evaluated. Results and discussion: The biomass in different parts of the plants was 24 to 51 % lower in drought. Pinus cembroides had greater growth in height, stem base diameter and stem and root biomass in irrigation, and greater growth in diameter and biomass of branches and root in drought than P. orizabensis. The aerial/root biomass ratio was higher in P. orizabensis, which increased by 34 % in drought. In P. orizabensis, the provenance with the best performance in both environments was the one from the highest elevation. Conclusion: Pinus cembroides showed greater growth and drought resistance than P. orizabensis. There are differences among provenances within each species in restrictive and non-limited moisture conditions.
https://doi.org/10.5154/r.rchscfa.2019.02.015
PDF

References

Allen, D. C., Breshears, D. D., & McDowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6(8), 1–55. doi: https://doi.org/10.1890/ES15-00203.1

Bailey, D. K. (1983). A new allopatric segregate from and a new combination in Pinus cembroides Zucc. at its southern limits. Phytologia, 54, 90. doi: https://doi.org/10.5962/bhl.part.14421

Bailey, D. K., & Hawksworth, F. G. (1992). Change in status of Pinus cembroides subsp. orizabensis (Pinaceae) from central Mexico. Novon, 2(4), 306–307. doi: https://doi.org/10.2307/3391483

Burney, O., Aldrete, A., Álvarez, R. R., Prieto, R. J. A., Sánchez, V. J. R., & Mexal, J. G. (2015). México-Addressing challenges to reforestation. Journal of Forestry, 113(4), 404–413. doi: https://doi.org/10.5849/jof.14-007

Cregg, B. M., Olivas-García, J. M., & Hennessey, T. C. (2000). Provenance variation in carbon isotope discrimination of mature ponderosa pine trees at two locations in the Great Plains. Canadian Journal of Forest Research, 30(3), 428–439. doi: https://doi.org/10.1139/x99-226

Dobbertin, M., Eilmann, B., Bleuler, P., Giuggiola, A., Graf-Pannatier, E., Landolt, W., Schleppi, P., & Rigling, A. (2010). Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiology, 30(3), 346–360. doi: https://doi.org/10.1093/treephys/tpp123

Eilmann, B., & Rigling, A. (2012). Tree-growth analyses to estimate tree species drought tolerance. Tree Physiology, 32(2), 178–187. doi: https://doi.org/10.1093/treephys/tps004

Espinoza, E. S., Magni, C. R., Santelices, R. E., Ivković, M., & Cabrera, A. M. (2016). Changes in drought tolerance of Pinus radiata in Chile associated with provenance and breeding generation. Annals of Forest Science, 73(2), 267–275. doi: https://doi.org/10.1007/s13595-015-0498-1

Granados, V. R. L., Granados, S., D., & Sánchez, G. A. (2015). Caracterización y ordenación de los bosques de pino piñonero (Pinus cembroides subsp. orizabensis) de la cuenca oriental (Puebla, Tlaxcala y Veracruz). Madera y Bosques, 21(2), 23–42. doi: https://doi.org/10.21829/myb.2015.212443

Hernández-Anguiano, A. L., López-Upton, J., Ramírez-Herrera, C., & Romero-Manzanares, A. (2018). Variación en germinación y vigor de semillas de Pinus cembroides y P. orizabensis. Agrociencia, 52(8), 1110–1122. Retrieved from https://www.colpos.mx/agrocien/Bimestral/2018/nov-dic/art-9.pdf

Hernández, M. M. M., Islas, G. J., & Guerra, C. V. (2011). Márgenes de comercialización del piñón (Pinus cembroides subsp. orizabensis) en Tlaxcala, México. Revista Mexicana de Ciencias Agrícolas, 2(2), 265–279. Retrieved from http://www.scielo.org.mx/pdf/remexca/v2n2/v2n2a7.pdf

Luna-Cavazos, M., Romero-Manzanares, A., & García-Moya, E. (2008). Afinidades de la flora genérica de piñonares del norte y centro de México: un análisis genético. Revista Mexicana de Biodiversidad, 79, 449–458. Retrieved from http://www.scielo.org.mx/pdf/rmbiodiv/v79n2/v79n2a19.pdf

Martínez-Trinidad, T., Vargas-Hernández, J. J., López-Upton, J., & Muñoz-Orozco, A. (2002). Respuesta al déficit hídrico en Pinus leiophylla: acumulación de biomasa, desarrollo de hojas secundarias y mortandad de plántulas. Terra Latinoamericana, 20(3), 291–301. Retrieved from https://chapingo.mx/terra/contenido/20/3/art291-301.pdf

Martiñón-Martínez, R. J., Vargas-Hernández, J. J., López-Upton, J., Gómez-Guerrero, A., & Vaquera-Huerta, H. (2010). Respuesta de Pinus pinceana Gordon a estrés por sequía y altas temperaturas. Revista Fitotecnia Mexicana, 33(3), 239–248. Retrieved from http://www.scielo.org.mx/pdf/rfm/v33n3/v33n3a8.pdf

Matías, L., & Jump, A. S. (2012). Interactions between growth, demography and biotic interaction in determining species range limits in a warming world: The case of Pinus sylvestris. Forest Ecology and Management, 282, 10–22. doi: https://doi.org/10.1016/j.foreco.2012.06.053

Matías, L., González-Díaz, P., & Jump, A. S. (2014). Larger investment in roots in southern range-edge populations of Scots pine is associated with increased growth and seedling resistance to extreme drought in response to simulated climate change. Environmental and Experimental Botany, 105, 32–38. doi: https://doi.org/10.1016/j.envexpbot.2014.04.003

Michelot, A., Bréda, N., Damesin, C., & Dufrêne, E. (2012). Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. Forest Ecology and Management, 265, 161–171. doi: https://doi.org/10.1016/j.foreco.2011.10.024

Perry, J. P. (1991). The pines of México and Central America. Portland, Oregon, USA: Timber Press.

Ripullone, F., Guerrieri, M. R., Nole, A., Magnani, F., & Borghetti, M. (2007). Stomatal conductance and leaf water potential responses to hydraulic conductance variation in Pinus pinaster seedlings. Trees, 21(3), 371–378. doi: https://doi.org/10.1007/s00468-007-0130-6

Sáenz-Romero, C. (2011). Guía para mover altitudinalmente semillas y plantas de Pinus oocarpa, P. devoniana (= P. michoacana), P. pseudostrobus, P. patula y P. hartwegii para restauración ecológica, conservación, plantaciones comerciales, y adaptación al cambio climático. Retrieved from https://www.fs.fed.us/global/nafc/genetics/2009/SaenzRomero_2011_GuiaAltitudinal_v04.pdf

Simeonova, N. P., & Hans, P. C. Z. (2011). Combining tree-ring analyses on stems and coarse roots to study the growth dynamics of forest trees: a case study on Norway spruce (Picea abies [L.] H. Karst). Trees, 25(5), 859–872. doi: https://doi.org/10.1007/s00468-011-0561-y

Statistical Analysis System (SAS Institute Inc.). (2003). The SAS System for Windows 9.0. Cary, NC, USA.

Vargas, P. E., & Venegas, L. M. (2012). Evaluación complementaria del PROCOREF-CONAFOR Ejercicio Fiscal 2011. Retrieved from http://www.cnf.gob.mx:8090/snif/portal/las-demas/estadisticas-del-medio-ambiente/22-contenidos/evaluaciones/documentos-de-evaluaciones/53-evaluaciones-externas-complementarias

Villar-Salvador, P., Peñuelas, J. L., & Jacobs, D. F. (2013). Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings. Tree Physiology, 33(2), 221–232. doi: https://doi.org/10.1093/treephys/tps133

Weed, A. S., Ayres, M. P., & Hicke, J. A. (2013). Consequences of climate change for biotic disturbances in North America forests. Ecological Monographs, 83(4), 441–470. doi: https://doi.org/10.1890/13-0160.1

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente