Revista Chapingo Serie Ciencias Forestales y del Ambiente
Runoff and erosion generation by simulated rainfall in a Mediterranean forest with forest management
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Watershed
Vernegà basin
Quercus suber
Pinus halepensis
unmanaged forest

How to Cite

Úbeda, Úbeda, Farguell, J., Francos, M., Outeiro, L., & Pacheco, E. (2019). Runoff and erosion generation by simulated rainfall in a Mediterranean forest with forest management. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 26(1), 37–51. https://doi.org/10.5154/r.rchscfa.2019.01.007

##article.highlights##

  • The forest road and the bare area produced more runoff (4 to 12 %).
  • The runoff coefficient in forests with and without forest management was less than 1 %.
  • The forest road recorded the highest erosion values (96 g·m-2).
  • Erosion in managed forests, dense forest and bare area was less than 4 g·m-2.
  • Quercus suber and Pinus halepensis management did not produce significant changes at soil level.

Abstract

Introduction: Forest management is necessary for forest conservation and the security of natural assets and people; however, forest management can have negative effects on some soil properties.
Objective: To determine whether forest management in a Mediterranean forest basin,consisting of Quercus suber L. and Pinus halepensis Mill., causes increased runoff and eroded material at slope level. 
Materials and methods: Seven land-use units were selected: a) dense forest (no management); b) recently managed cork oak forest, c) recently managed pine forest; d) cork oak forest with two years of management, e) pine forest with two years of management, f) bare terrain with herbaceous vegetation and (g) a forest road. In each area, four rainfall simulations were carried out from a height of 2 m, at a pressure of 1.7 kg·cm -2 , equivalent to a rainfall intensity of 60 mm·h -1 . An ANOVA was performed and significant differences were verified (post-hoc Tukey test, P < 0.05).
Results and discussion: The forest road and the bare terrain, areas devoid of vegetation, produced more runoff (4 to 12 %) than more vegetated areas (<1 %). The forest road recorded significantly higher erosion values (96 g·m -2 ) than the other land uses (<4 g·m -2 )
Conclusion: There is no difference in the generation of runoff and erosion in the managed areas, both pine and cork oak, compared to dense or unmanaged forest.

https://doi.org/10.5154/r.rchscfa.2019.01.007
PDF

References

Bathurst, C., Bovolo, I., & Cisneros, F. (2010). Modelling the effect of forest cover on shallow landslides at the river basin scale. Ecological Engineering, 36, 317‒327. doi: https://doi.org/10.1016/j.ecoleng.2009.05.001

Benayas, J. R., Martins, A., Nicolau, J. M., & Schulz, J. J. (2007). Abandonment of agricultural land: an overview of drivers and consequences. CAB Reviews Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2(57), 1‒14. doi: https://doi.org/10.1079/PAVSNNR20072057

Butzen, V., Seeger, M., Wirtz, S., Huemann, M., Mueller, C., Casper, M., & Ries, J. B. (2014). Quantification of Hortonian overland flow generation and soil erosion in a Central European low mountain range using rainfall experiments. CATENA, 113, 202‒212. doi: https://doi.org/10.1016/j.catena.2013.07.008

Calvo, A., Gisbert, B., Palau, E., & Romero, M. (1988). Un simulador de lluvia portátil de fácil construcción. En M. Sala & F. Gallart (Eds.), Métodos y técnicas para la medición de procesos geomorfológicos (pp. 6‒15). Logroño, España: SEG. Retrieved from https://geomorfologia.es/sites/default/files/Monograf%C3%ADa%20n%C2%BA%201%20SEG.pdf

Cervera, T., Garrabou, R., & Tello, E. (2015). Política forestal y evolución de los bosques en Cataluña desde el siglo XIX hasta la actualidad. Investigaciones de Historia Económica, 11(2), 116‒127. doi: https://doi.org/10.1016/j.ihe.2014.04.002

Centre de la Propietat Forestal (CPF). (2013). Manual de redacció de plans tècnics de gestió i millora forestal (PTGMF) i plans simples de gestió forestal (PSGF). Instruccions de redacció i l'inventari forestal. Barcelona, Espanya: Generalitat de Catalunya. Retrieved from http://cpf.gencat.cat/ca/detalls/Article/03_Manual-de-redaccio-de-plans-tecnics-de-gestio-i-millora-forestal

Croke, J., Hairsine, P., & Fogarty, P. (2001). Soil recovery from track construction and harvesting changes in surface infiltration, erosion and delivery rates with time. Forest Ecology and Management, 143(1-3), 3‒12. doi: https://doi.org/10.1016/S0378-1127(00)00500-4

Ehigiator, O. A., & Anyata, B. U. (2011). Effects of land clearing techniques and tillage systems on runoff and soil erosion in a tropical rain forest in Nigeria. Journal of Environmental Management, 92(11), 2875‒2880. doi: https://doi.org/10.1016/j.jenvman.2011.06.015

Francos, M., Pereira, P., Mataix-Solera, J., Arcenegui, V., Alcañiz, M., & Úbeda, X. (2018). How clear-cutting affects fire severity and soil properties in a Mediterranean ecosystem. Journal of Environmental Management, 206, 625‒632. doi: https://doi.org/10.1016/j.jenvman.2017.11.011

Francos, M., Úbeda, X., & Pereira, P. (2019). Impact of torrential rainfall and salvage logging on post-wildfire soil properties in NE Iberian Peninsula. CATENA, 177, 210‒218. doi: https://doi.org/10.1016/j.catena.2019.02.014.

Francos, M., Úbeda, X., Tort, J., Panareda, J. M., & Cerdà, A. (2016). The role of forest fire severity on vegetation recovery after 18 years. Implications for forest management of Quercus suber L. in Iberian Peninsula. Global Planetary Change, 145, 11‒16. doi: https://doi.org/10.1016/j.gloplacha.2016.07.016

Hartanto, H., Prabhu, R., Widayat, A. S. E., & Asdak, C. (2003). Factors affecting runoff and soil erosion: plot-level soil loss monitoring for assessing sustainability of forest management. Forest Ecology and Management, 180(1-3), 361‒374. doi: 10.1016/S0378-1127(02)00656-4

IUSS Working Group WRB. (2006). World reference base for soil resources 2006. Rome, Italy: FAO.

Johnson, C. E., Johnson, A. H., Huntington, T. G., & Siccama, T. G. (1991). Whole-tree clear-cutting effects on soil horizons and organic-matter pools. Soil Science Society of America Journal, 55(2), 497‒502. doi: https://doi.org/10.2136/sssaj1991.03615995005500020034x

Labrière, N., Locatelli, B., Laumonier, Y., Freycon, V., & Martial B. (2015). Soil erosion in the humid tropics: A systematic quantitative review. Agriculture, Ecosystems and Environment, 203, 127–139. doi: https://doi.org/10.1016/j.agee.2015.01.027

Martínez-Alier, J., & Roca-Jusment, J. (2000). Economía ecológica y política ambiental. España: Fondo de Cultura Económica de España.

McBroom, M. W., Beasley, R. S. Chang, M., & Ice, G. G. (2007). Storm runoff and sediment losses from forest clearcutting and stand re‐establishment with best management practices in East Texas, USA. Hydrological Processes, 22(10), 1509–1522. doi: https://doi.org/10.1002/hyp.6703

McDonald, M. A., Healey, J. R., & Stevens, P. A. (2002). The effects of secondary forest clearance and subseqüent land-use on erosion losses and soil properties in the Blue Mountains of Jamaica. Agriculture, Ecosystems and Environment, 92, 1‒19. doi: https://doi.org/10.1016/S0167-8809(01)00286-9

Mena, H. D., Benavides C. C., & Castillo, J. A. (2011). Evaluación de la susceptibilidad a la erosión hídrica de un Vitric haplustands, mediante el uso de un minisimulador de lluvia, en una zona de ladera en Colombia. Revista de Ciencias Agrícolas, 28, 70‒80.

Mohamadi, M. A., & Kavian, A. (2015). Effects of rainfall patterns on runoff and soil erosion in field plots. International Soil and Water Conservation Research, 3(4), 273–281. doi: https://doi.org/10.1016/j.iswcr.2015.10.001

Neary, D. G., Ice, G. G., & Jackson, R. (2009). Linkages between forest soils and water quality and quantity. Forest Ecology and Management, 258(10), 2269‒2281. doi: https://doi.org/10.1016/j.foreco.2009.05.027

O’Farrell, C. R., Heimsath, A. M., & Kaste, J. M. (2007). Quantifying hillslope erosion rates and processes for a coastal California landscape over varying timescales. Earth Surface Processes and Landforms, 32(4), 544–560. doi: https://doi.org/10.1002/esp.1407

Pacheco, E., Farguell, J., Úbeda, X., Outeiro, L., & Miguel, A. (2011). Runoff and sediment production in a Mediterranean basin under two different land uses. Cuaternario y Geomorfología, 25(3-4), 103–114. Retrieved from http://tierra.rediris.es/CuaternarioyGeomorfologia/images/vol25_3_4/07%20Pacheco%20et%20al.pdf

Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., … Alewell, C. (2015a). The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54, 438–447. doi: https://doi.org/10.1016/j.envsci.2015.08.012

Panagos, P., Borrelli, P., Meusburgerb, K., Alewell, C., Lugato, E., & Montanarella, L. (2015b). Estimating the soil erosion cover-management factor at the European Scale. Land Use Policy, 48, 38–50. doi: https://doi.org/10.1016/j.landusepol.2015.05.021

Peix, J. (1999). Foc Verd II. Programa de gestió del risc d’incendi forestal. Barcelona, España: Direcció General del Medi Natural.

Plana, E. (2011). Cultura del risc i comunicació sobre el foc i els incendis forestals. Treballs de la Societat Catalana de Geografía, 71-72, 265‒282. Retrieved from https://publicacions.iec.cat/repository/pdf/00000180%5C00000078.pdf

Sala, M., & Rubio, C. (2000). Estudi i mesura de l’escolament I l’erosió en parcel·les experimentals al Massís de les Gavarres. Butlletí de la Institució Catalana d’Història Natural, 68, 135‒148. Retrieved from https://www.raco.cat/index.php/ButlletiICHN/article/view/163685/215583

Sidle, R., Ziegler, A. D., Negishi, J. N., Nik, A. R., Siew, R., & Turkelboom, F. (2006). Erosion processes in steep terrain—Truths, myths, and uncertainties related to forest management in Southeast Asia. Forest Ecology and Management, 224(1-2), 199–225. doi: https://doi.org/10.1016/j.foreco.2005.12.019

Stott, T., Leeks, G., Marks, S., & Sawyer, A. (2001). Environmentally sensitive plot-scale timber harvesting: impacts on suspended sediment, bedload and bank erosion dynamics. Journal of Environmental Management, 63, 3–25. doi: https://doi.org/10.1006/jema.2001.0459

Úbeda, X., & Sala, M. (1998). Variations in runoff and erosion in three areas with different fire intensities. Geo-ökö-Dynamik, 19(3-4), 179‒188. Retrieved from https://www.tib.eu/en/search/id/BLSE%3ARN073076808/Variations-in-runoff-and-erosion-in-three-areas/

Úbeda, X., & Sala, M. (2001). Chemical concentrations in overland flow from different forested areas in a Mediterranean Environment: burned forest at different fire intensity and unpaved road. Zeitschrift für Geomorphologie, 45(2), 225‒238. Retrieved from https://www.schweizerbart.de/papers/zfg/detail/45/64248/Chemical_concentrations_in_overland_flow_from_different_forested_areas_in_a_Mediterranean_Environment_burned_forest_at_different_fire_intensity_and_unpaved_road

Vélez, R. (2000). Los incendios forestales en la cuenca mediterránea. Introducción. En R. Vélez, (Ed.), La defensa contra los incendios forestales. Fundamentos y experiencias (pp. 3.15-3.31). España: McGraw-Hill.

Wakiyama, Y., Onda, Y., Mizugaki, S., Asai, H., & Hiramatsu, S. (2010). Soil erosion rates on forested mountain hillslopes estimated using 137Cs and 210Pbex. Geoderma, 159(1-2), 39‒52. doi: https://doi.org/10.1016/j.geoderma.2010.06.012

Zemke, J. J. (2016). Runoff and soil erosion assessment on forest roads using a small scale rainfall simulator. Hydrology, 3(3), 25. doi: https://doi.org/10.3390/hydrology3030025

Zimmermann, A., Francke, T., & Elsenbeer, H. (2012). Forests and erosion: Insights from a study of suspended-sediment dynamics in an overland flow-prone rainforest catchment. Journal of Hydrology, 428-429, 170‒181. doi: https://doi.org/10.1016/j.jhydrol.2012.01.039

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente