Revista Chapingo Serie Ciencias Forestales y del Ambiente
Obtaining microorganisms in cloud forest soils for the degradation ofaromatic hydrocarbons
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Genetic characterization
soil pollutants
Lactobacillus
Prevotella
mineralization

How to Cite

Cruz-Narváez, Y., Rico-Arzate, E., Castro-Arellano, J. J., Noriega-Altamirano, G., Piña-Escobedo, A., Murugesan, S., & García-Mena, J. (2018). Obtaining microorganisms in cloud forest soils for the degradation ofaromatic hydrocarbons. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 25(1), 95–106. https://doi.org/10.5154/r.rchscfa.2018.06.055

##article.highlights##

  • Fifty different microbial consortiums were collected, cultured and genetically characterized.
  • The microorganisms were obtained in a cloud forest in the Sierra Sur region of Oaxaca.
  • Lactobacillus, Prevotella and genera of the family Acetobacteraceae predominated in the samples.
  • The ability of the microorganisms to degrade benzene, toluene, ethylbenzene and anthracene was analyzed.
  • The pollutant concentration decreased 97 % and 91 % mineralization was obtained in less than 25 hours.

Abstract

Introduction: The impact of polluting substances, especially those of fossil fuels, on theenvironment is an important issue in the world. The ability of microorganisms to degradethese pollutants has been recently studied and characterized.
Objective:  To analyze the ability of groups of microorganisms, obtained from a cloudforest   ecosystem   in   Mexico,   to   degrade   aromatic   compounds   (benzene,   toluene,ethylbenzene and anthracene).
Materials and methods: Microbiome samples were collected in the Sierra Madre del Surin the state of Oaxaca. The microorganisms were isolated and identified by moleculartechniques.   Subsequently,   the   ability   of   the   microorganisms   to   degrade   aromatichydrocarbons  in  a   packed-bed  bioreactor   was   quantitatively   evaluated   by  HPLC-PDAchromatography.
Results   and   discussion:  Fifty  groups of  microorganisms were  collected, cultured  andgenetically characterized. In genetic diversity, Lactobacillus, Prevotella and genera of the2 family Acetobacteraceae predominated. In the hydrocarbon biodegradation process, thepollutant concentration decreased 97 % and 91 % mineralization was achieved in less than25 h.
Conclusions: The microorganisms showed significant degrading activity of the aromaticcompounds. Biodiversity in the cloud forest  in  the Loxicha region is key to  ensuringecosystem services, so it is important to undertake explorations to evaluate the use of thesebacterial microbiomes.

https://doi.org/10.5154/r.rchscfa.2018.06.055
PDF

References

Atlas, R., & Bragg, J. (2009). Bioremediation of marine oil spills: when and when not - the Exxon Valdez experience. Microbial Biotechnology, 2(2), 213–221. doi: https://doi.org/10.1111/j.1751-7915.2008.00079.x

Bacosa, H. P., Suto, K., & Inoue, C. (2011). Preferential utilization of petroleum oil hydrocarbon components by microbial consortia reflects degradation pattern in aliphatic–aromatic hydrocarbon binary mixtures. World Journal of Microbiology and Biotechnology, 27(5), 1109–1117. doi: https://doi.org/10.1007/s11274-010-0557-6

Boopathy, R., Shields, S., & Nunna, S. (2012). Biodegradation of crude oil from the BP oil spill in the marsh sediments of Southeast Louisiana, USA. Applied Biochemistry and Biotechnology, 167(6), 1560–1568. doi: https://doi.org/10.1007/s12010-012-9603-1

Bouchez-Naïtali, M., & Vandecasteele, J.-P. (2008). Biosurfactants, an help in the biodegradation of hexadecane? The case of Rhodococcus and Pseudomonas strains. World Journal of Microbiology and Biotechnology, 24(9), 1901–1907. doi: https://doi.org/10.1007/s11274-008-9691-9

Feng, L., Wang, W., Cheng, J., Ren, Y., Zhao, G., Gao, C., …Wang, L. (2007). Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proceedings of the National Academy of Sciences, 104(13), 5602–5607. doi: https://doi.org/10.1073/pnas.0609650104

Fukuyama, A. K., Shigenaka, G., & Coats, D. A. (2014). Status of intertidal infaunal communities following the Exxon Valdez oil spill in Prince William Sound, Alaska. Marine Pollution Bulletin, 84(1-2), 56–69. doi: https://doi.org/10.1016/j.marpolbul.2014.05.043

García-Mena, J., Murugesan, S., Pérez-Muñoz, A. A., García-Espitia, M., Maya, O., Jacinto-Montiel, M., …Núñez-Cardona, M. T. (2016). Airborne bacterial diversity from the low atmosphere of Greater Mexico City. Microbial Ecology, 72(1), 70–84. doi: https://doi.org/10.1007/s00248-016-0747-3

Gual-Díaz, M., & Rendón-Correa, A. (2014). Bosques mesófilos de montaña en México: Diversidad, ecología y manejo. México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Retrieved from http://www.biodiversidad.gob.mx/ecosistemas/pdf/BosquesMesofilos_montana_baja.pdf

Guo, H., Yao, J., Cai, M., Qian, Y., Guo, Y., Richnow, H. H., … Ceccanti, B. (2012). Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere, 87(11), 1273–1280. doi: https://doi.org/10.1016/j.chemosphere.2012.01.034

Huang, J., Nemati, M., Hill, G., & Headley, J. (2012). Batch and continuous biodegradation of three model naphthenic acids in a circulating packed-bed bioreactor. Journal of Hazardous Materials, 201-202, 132–140. doi: https://doi.org/10.1016/j.jhazmat.2011.11.052

Lareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90(6), 575–587. doi: https://doi.org/10.1007/s11103-015-0417-8

Ławniczak, Ł., Kaczorek, E., & Olszanowski, A. (2011). The influence of cell immobilization by biofilm forming on the biodegradation capabilities of bacterial consortia. World Journal of Microbiology and Biotechnology, 27(5), 1183–1188. doi: https://doi.org/10.1007/s11274-010-0566-5

Monteiro, S. A., Sassaki, G. L., de Souza, L. M., Meira, J. A., de Araújo, J. M., Mitchell, D. A., … Krieger, N. (2007). Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chemistry and Physics of Lipids, 147(1), 1–13. doi: https://doi.org/10.1016/j.chemphyslip.2007.02.001

Nurulita, Y., Adetutu, E. M., Gunawan, H., Zul, D., & Ball, A. S. (2016). Restoration of tropical peat soils: The application of soil microbiology for monitoring the success of the restoration process. Agriculture, Ecosystems & Environment, 216, 293–303. doi: https://doi.org/10.1016/j.agee.2015.09.031

Ofek-Lalzar, M., Sela, N., Goldman-Voronov, M., Green, S. J., Hadar, Y., & Minz, D. (2014). Niche and host-associated functional signatures of the root surface microbiome. Nature Communications, 5, 4950. doi: https://doi.org/10.1038/ncomms5950

O’Toole, G. A., & Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Molecular Microbiology, 28(3), 449–461. doi: https://doi.org/10.1046/j.1365-2958.1998.00797.x

Panke-Buisse, K., Lee, S., & Kao-Kniffin, J. (2017). Cultivated sub-populations of soil microbiomes retain early flowering plant trait. Microbial Ecology, 73(2), 394–403. doi: https://doi.org/10.1007/s00248-016-0846-1

Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E., & Kao-Kniffin, J. (2015). Selection on soil microbiomes reveals reproducible impacts on plant function. The ISME Journal, 9(4), 980. doi: https://doi.org/10.1038/ismej.2014.196

Patel, V., Cheturvedula, S., & Madamwar, D. (2012). Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat, India. Journal of Hazardous Materials, 201-202, 43–51. doi: https://doi.org/10.1016/j.jhazmat.2011.11.002

Poosakkannu, A., Nissinen, R., & Kytöviita, M.-M. (2017). Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition. Mycorrhiza, 27(8), 801–810. doi: https://doi.org/10.1007/s00572-017-0796-6

Rodriguez-R, L. M., Overholt, W. A., Hagan, C., Huettel, M., Kostka, J. E., & Konstantinidis, K. T. (2015). Microbial community successional patterns in beach sands impacted by the deepwater horizon oil spill. The ISME Journal, 9, 1928–1940. doi: https://doi.org/10.1038/ismej.2015.5

Rodríguez-Zaragoza, S., González-Ruíz, T., González-Lozano, E., Lozada-Rojas, A., Mayzlish-Gati, E., & Steinberger, Y. (2008). Vertical distribution of microbial communities under the canopy of two legume bushes in the Tehuacán Desert, Mexico. European Journal of Soil Biology, 44(4), 373–380. doi: https://doi.org/10.1016/j.ejsobi.2008.05.003

Rota, E., Caruso, T., Monaci, F., Baldantoni, D., De Nicola, F., Iovieno, P., & Bargagli, R. (2013). Effects of soil pollutants, biogeochemistry and microbiology on the distribution and composition of enchytraeid communities in urban and suburban holm oak stands. Environmental Pollution, 179, 268–276. doi: https://doi.org/10.1016/j.envpol.2013.04.026

Sharifi, Y., Van Aken, B., & Boufadel, M. C. (2011). The effect of pore water chemistry on the biodegradation of the Exxon Valdez oil spill. Water Quality, Exposure and Health, 2(3-4), 157–168. doi: https://doi.org/10.1007/s12403-010-0033-4

Stepanyan, O. V., & Voskoboinikov, G. M. (2006). Effect of oil and oil products on morphofunctional parameters of marine macrophytes. Russian Journal of Marine Biology, 32(S1), S32–S39. doi: https://doi.org/10.1134/S1063074006070042

Janikowski, T., Velicogna, D., Punt, M., & Daugulis, A. (2002). Use of a two-phase partitioning bioreactor for degrading polycyclic aromatic hydrocarbons by a Sphingomonas sp. Applied Microbiology and Biotechnology, 59(2-3), 368–376. doi: https://doi.org/10.1007/s00253-002-1011-y

Vásquez-Murrieta, M. S., Govaerts, B., & Dendooven, L. (2007). Microbial biomass C measurements in soil of the central highlands of Mexico. Applied Soil Ecology, 35(2), 432–440. doi: https://doi.org/10.1016/j.apsoil.2006.06.005

Vaz-Moreira, I., Nunes, O. C., & Manaia, C. M. (2014). Bacterial diversity and antibiotic resistance in water habitats: Searching the links with the human microbiome. FEMS Microbiology Reviews, 38(4), 761–778. doi: https://doi.org/10.1111/1574-6976.12062

Wu, J.-Y., Yeh, K.-L., Lu, W.-B., Lin, C.-L., & Chang, J.-S. (2008). Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresource Technology, 99(5), 1157–1164. doi: https://doi.org/10.1016/j.biortech.2007.02.026

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2019 Revista Chapingo Serie Ciencias Forestales y del Ambiente