Revista Chapingo Serie Ciencias Forestales y del Ambiente
Optimization of a mature cotyledons-based in vitro culture system forembryogenic-callus induction in carob (Ceratonia siliqua L.)
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Fabaceae
genotype
mineral nutrients
sucrose
histological study

How to Cite

Lozzi, A. ., Abdelwahd, R., Alami-Halimi, D., Mentag, R., & Abousalim, A. (2018). Optimization of a mature cotyledons-based in vitro culture system forembryogenic-callus induction in carob (Ceratonia siliqua L.). Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 25(1), 71–84. https://doi.org/10.5154/r.rchscfa.2018.06.053

##article.highlights##

  • Five genotypes of carob (Ceratonia siliqua) were evaluated in the induction of embryonic callus.
  • The genotypes tested showed high callus induction levels (75 to 100 %).
  • The Gamborg medium (B5) with 2.5 µM 2,4-D produced the highest dry weight (32.5 g) of callus.
  • The largest amount of creamy white friable calli was obtained in the medium with 90 mM of sucrose.
  • Histological study of induced callus showed active centers with embryogenic characteristics.

Abstract

Introduction: The carob tree (Ceratonia siliqua L.) is one of the most important plant species cultivated in the Mediterranean area.  The species is in high market demand, but traditional propagation methods have not been able to satisfy it. Therefore, the use of in vitro techniques seems appropriate for the establishment of large-scale carob orchards.
Objectives: To assess the effects of five carob genotypes on embryogenic-calli induction andto optimize culture medium composition for better growth.
Materials and methods: The mature seeds of C. siliqua of the variety "Dkar", which grow infive regions of Morocco, were used as sources of explants of cotyledons.  Five genotypes(‘GH’, ‘GO’, ‘GM’, ‘GA’, and ‘GB’) and four culture media (MS, B5, WPM and DKW)supplemented with three 2,4-D concentrations (2.5, 5 and  10 µM) were evaluated  in  this study. Sucrose and mannitol were also tested at different concentrations (0, 45, 90, 135 and180 µM).
Results and discussion: All the tested genotypes showed high callus induction levels (75 to 100 %). The Gamborg medium (B5) supplemented with 2.5 µM 2,4-D produced the highest dry weight (32.5 g) of creamy white calli. The highest amount of friable creamy-white calliwas obtained in the  medium supplemented with 90 mM  of sucrose. Histological  analysis showed the presence of meristematic centers that became embryogenic masses and globularproembryos.
Conclusion: Mature cotyledons of C. siliqua have potential for induction and proliferation ofembryonic callus. This study aims to contribute to developing an appropriate protocol formass propagation of carob.

https://doi.org/10.5154/r.rchscfa.2018.06.053
PDF

References

References

Azeez, H., Ibrahim, K., Pop, R., Pamfil, D., Hârta, M., & Bobis, O. (2017). Changes induced by gamma ray irradiation on biomass production and secondary metabolites accumulation in Hypericum triquetrifolium Turra callus cultures. Industrial Crops and Products, 108, 183–189. doi: https://doi.org/10.1016/j.indcrop.2017.06.040

Behbahani, M., Shanehsazzadeh, M., & Hessami, M. J. (2011). Optimization of callus and cell suspension cultures of Barringtonia racemosa (Lecythidaceae family) for lycopene production. Scientia Agricola, 68(1), 69–76. doi: https://doi.org/10.1590/s0103-90162011000100011

Benković, M., Srečec, S., Bauman, I., Ježek, D., Karlović, S., Kremer, D., …Erhatić, R. (2016). Assessment of drying characteristics and texture in relation with micromorphological traits of carob (Ceratonia silliqua L.) pods and seeds. Food Technology and Biotechnology, 54(4), 432–440. doi: https://doi.org/10.17113/ftb.54.04.16.4475

Brhadda, N., Walali, D. E. L., & Abousalim, A. (2007). Etude histologique de l’embryogenèse somatique de l’olivier Olea europaea cv. Picholine marocaine. Fruits, 62(2), 115–124. doi: https://doi.org/10.1051/fruits:2003005

Brhadda, N., Walali, D. E. L.,& Abousalim, A. (2008). Effet du sucre sur l’embryogenèse somatique de l’olivier (Olea europaea L.) cv . “Picholine marocaine”. Biotechnologie, Agronomie, Société et Environnement, 12(3), 245–250. Retrieved from https://popups.uliege.be/1780-4507/index.php?id=2521

Canhoto, J. M., Rama, S. C., & Cruz, G. S. (2006). Somatic embryogenesis and plant regeneration in carob (Ceratonia siliqua L.). In Vitro Cellular & Developmental Biology - Plant, 42(6), 514–519. doi: https://doi.org/10.1079/ivp2006819

Cob-Uicab, J. V., Sabja, A. M., Ríos-Leal, D., Lara-Aguilar, A., Donoso, P. J., González, M. E., & Escobar, B. (2011). Potencial de la organogénesis como estrategia para la masificación in vitro de Fitzroya cupressoides en Sudamérica Austral. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 17(3), 423–433. doi: https://doi.org/10.5154/r.rchscfa.2010.11.118

Custodio, L., & Romano, A. (2006). In Vitromorphogenesis in zygotic embryo cultures of carob tree (Ceratonia siliqua L.). Acta Horticulturae, 725, 477–482. doi: https://doi.org/10.17660/actahortic.2006.725.68

Din, A. R. J. M., Ahmad, F. I., Wagiran, A., Samad, A. A., Rahmat, Z., & Sarmidi, M. R. (2016). Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas). Saudi Journal of Biological Sciences, 23(1), S69–S77. doi: https://doi.org/10.1016/j.sjbs.2015.10.022

Driver, J. A., & Kuniyuki, A. H. (1984). In vitro propagation of Paradox walnut rootstock. HortScience, 19(4), 507–509. Retrieved from https://www.researchgate.net/publication/235909861_In_vitro_propagation_of_Paradox_Walnut_root_stock

El Bouzdoudi, B., Saïdi, R., Khalid, E., El Mzibri, M., Nejjar, A. Z., El Kbiach, M. L., …Lamarti, A. (2017). Mineral composition of mature carob (Ceratonia siliqua L.) Pod: A Study. International Journal of Food Science and Nutrition Engineering, 7(4), 91–103. doi: https://doi.org/10.5923/j.food.20170704.04

El Kahkahi, R., Zouhair, R., Ait Chitt, M., & Errakhi, R. (2014). Morocco carob (Ceratonia siliqua L.) populations: Morphological variability of Pods and Kernel. International Journal of Pure & Applied Bioscience, 2(4), 38–47. Retrieved from http://www.ijpab.com/form/2014 Volume 2, issue 4/IJPAB-2014-2-4-38-47.pdf

Evans, D. E., Coleman, J. O. D., & Kearns, A. (2003). Plant cell culture. London and New York: BIOS Scientific Publisher.

Fadel, F., Fattouch, S., Tahrouch, S., Lahmar, R., Benddou, A., & Hatimi, A. (2011). The phenolic compounds of Ceratonia siliqua pulps and seeds. Journal of Materials and Environmental Science, 2(3), 285–292. Retrieved from https://www.jmaterenvironsci.com/Document/vol2/vol2_N3/23-JMES-78-2011-Fadel.pdf

FAO (2016). Food and Agriculture Organization of the United Nations website. Retrieved April 25, 2018, from http://www.fao.org/faostat/en/#data/QC

Gamborg, O. L., Miller, R., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50(1), 151–158. doi: https://doi.org/10.1016/0014-4827(68)90403-5

George, E. F., & de Klerk, G.J. (2008). The components of plant tissue culture media I: macro-and micro-nutrients. In E. F. George, M. A. Hall, & G.J. de Klerk (Eds.), Plant propagation by tissue culture (3rd ed., pp. 65–114). Netherlands: Springer. doi: https://doi.org/10.1007/978-1-4020-5005-3_3

Han, Y., Jin, X., Wu, F., & Zhang, G. (2011).Genotypic differences in callus induction and plant regeneration from mature embryos of barley (Hordeum vulgare L.). Journal of Zhejiang University-Science B, 12(5), 399–407. doi: https://doi.org/10.1631/jzus.b1000219

Hoque, A., Biswas, M. K., & Alam, S. (2007). Variation of callus induction through anther culture in water chestnut (Trapa sp.). Turkish Journal of Biology, 31(1), 41–45. Retrieved from http://journals.tubitak.gov.tr/biology/issues/biy-07-31-1/biy-31-1-7-0606-7.pdf

Jayaraman, S., Daud, N. H., Halis, R., & Mohamed, R. (2014). Effects of plant growth regulators, carbon sources and pH values on callus induction in Aquilaria malaccensis leaf explants and characteristics of the resultant calli. Journal of Forestry Research, 25(3), 535–540. doi: https://doi.org/10.1007/s11676-014-0492-8

Khorsha, S., Alizadeh, M., & Mashayekhi, K. (2016). The usefulness of apricot gum as an organic additive in grapevine tissue culture media. Advances in Horticultural Science, 30(2), 111–118. doi: https://doi.org/10.13128/ahs-19137

Kim, D. H., Gopal, J., & Sivanesan, I. (2017). Nanomaterials in plant tissue culture: The disclosed and undisclosed. RSC Advances, 7(58), 36492–36505. doi: https://doi.org/10.1039/c7ra07025j

Konaté, I., Filali-Maltouf, A., & Berraho, E. B. (2007). Diversity analysis of Moroccan carob (Ceratonia siliqua L.) accessions using phenotypic traits and RAPD markers. Acta Botanica Malacitana, 32, 79–90. Retrieved from http://www.biolveg.uma.es/abm/volumenes/vol32/32.ceratonia.pdf

Konaté, S., Koné, M., Kouakou, H. T., Kouadio, J. Y., & Zouzou, M. (2013). Callus induction and proliferation from cotyledon explants in Bambara groundnut. African Crop Science Journal, 21(3), 255–263. Retrieved from https://www.ajol.info/index.php/acsj/article/view/91326

Ksia, E., Harzallah-Skhiri, F., Verdeil, J. L., Gouta, H., Alemanno, L., & Bouzid, S. (2008). Somatic embryo production from immature seeds of carob (Ceratonia siliqua L.).Journal of Horticultural Science and Biotechnology, 83(4), 401–406. doi: https://doi.org/10.1080/14620316.2008.11512398

Kumar, S., Suri, S. S., Sonie, K. C., & Ramawat, K. G. (2003). Establishment of embryonic cultures and somatic embryogenesis in callus culture of guggul-Commiphora wightii (Arnott.) Bhandari. Indian Journal of Experimental Biology, 41(1), 69–77. Retrieved from https://www.researchgate.net/publication/8442728_Establishment_of_embryonic_cultures_and_somatic_embryogenesis_in_callus_culture_of_guggul-Commiphora_wightii_Arnott_Bhandari

Lipavská, H., & Vreugdenhil, D. (1996). Uptake of mannitol from the media by in vitro grown plants. Plant Cell, Tissue and Organ Culture, 45(2), 103–107. doi: https://doi.org/10.1007/bf00048751

Lloyd, G., & McCown, B. (1980). Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proceedings of the International Plant Propagators’ Society,30, 421–427. Retrieved from https://www.pubhort.org/ipps/30/99.htm

Lou, H., & Kako, S. (1995). Role of high sugar concentrations in inducing somatic embryogenesis from cucumber cotyledons. Scientia Horticulturae, 64(1–2), 11–20. doi: https://doi.org/10.1016/0304-4238(95)00833-8

Lozzi, A., Abousalim, A., & Abdelwahd, R. (2015). Effet de 2, 4-D sur l’induction de l’embryogenèse somatique à partir de cotylédons matures de caroubier (Ceratonia siliqua L.). Revue Marocaine Des Sciences Agronomiques et Vétérinaires, 3, 24–29. Retrieved from http://www.agrimaroc.org/index.php/Actes_IAVH2/article/download/394/341

Mujib, A., Ali, M., Tonk, D., & Zafar, N. (2017). Nuclear 2C DNA and genome size analysis in somatic embryo regenerated gladiolus plants using flow cytometry. Advances in Horticultural Science, 31(3), 165–174. doi: https://doi.org/10.13128/ahs-21956

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497. doi: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nakagawa, H., Saijyo, T., Yamauchi, N., Shigyo, M., Kako, S., & Ito, A. (2001). Effects of sugars and abscisic acid on somatic embryogenesis from melon (Cucumis melo L.) expanded cotyledon. Scientia Horticulturae, 90(1–2), 85–92. doi: https://doi.org/10.1016/s0304-4238(00)00259-4

Ramírez, A. M. H., Vasquez, T., Osorio, T. M. O., Garcés, L. A., & Trujillo, A. I. U. (2018). Evaluation of the potential of regeneration of different Colombian and commercial genotypes of cocoa (Theobroma cacao L.) via somatic embryogenesis. Scientia Horticulturae, 229, 148–156. doi: https://doi.org/10.1016/j.scienta.2017.10.040

Reyes-Díaz, J. I., Arzate-Fernández, A. M., Piña-Escutia, J. L., & Vázquez-García, L. M. (2017). Media culture factors affecting somatic embryogenesis in Agave angustifolia Haw. Industrial Crops and Products, 108, 81–85. doi: https://doi.org/10.1016/j.indcrop.2017.06.021

Saeed, T., & Shahzad, A. (2015). High frequency plant regeneration in Indian Sirisvia cyclic somatic embryogenesis with biochemical, histological and SEM investigations. Industrial Crops and Products, 76, 623–637. doi: https://doi.org/10.1016/j.indcrop.2015.07.060

Salehi, H., & Khosh-Khui, M. (2005). Effects of genotype and plant growth regulator on callus induction and plant regeneration in four important turfgrass genera: a comparative study. In Vitro Cellular and Developmental Biology-Plant, 41(2), 157–161. doi: https://doi.org/10.1079/ivp2004614

Schween, G., & Schwenkel, H.G. (2003). Effect of genotype on callus induction, shoot regeneration, and phenotypic stability of regenerated plants in the greenhouse of Primula ssp. Plant Cell, Tissue and Organ Culture, 72(1), 53–61. doi: https://doi.org/10.1023/A:1021227414880

Shahnewaz, S., Bari, M. A., Siddique, N. A., & Rahman, M. H. (2004). Effects of genotype on induction of callus and plant regeneration potential in vitro anther culture of rice (Oryza sativa L.). Pakistan Journal of Biological Sciences, 7(2), 235–237. doi: https://doi.org/10.3923/pjbs.2004.235.237

Shahzad, A., Akhtar, R., Bukhari, N. A., & Perveen, K. (2017). High incidence regeneration system in Ceratonia siliqua L. articulated with SEM and biochemical analysis during developmental stages. Trees, 31(4), 1149–1163. doi: https://doi.org/10.1007/s00468-017-1534-6

Shibli, R. A., Subaih, W. S., & Abdelrahman, N. (2005). Effect of different carbohydrates on in vitro maintenance of date palm embryogenic callus. Advances in Horticultural Science, 19(3),172–175. Retrieved from http://www.jstor.org/stable/42882411

Sidina, M. M., El Hansali, M., Wahid, N., Ouatmane, A., Boulli, A., & Haddioui, A. (2009). Fruit and seed diversity of domesticated carob (Ceratonia siliqua L.) in Morocco. Scientia Horticulturae, 123(1), 110–116. doi: https://doi.org/10.1016/j.scienta.2009.07.009

SPSS, Corp. (2012). IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp.

Steinitz, B. (1999). Sugar alcohols display nonosmotic roles in regulating morphogenesis and metabolism in plants that do not produce polyols as primary photosynthetic products. Journal of Plant Physiology, 155(1), 1–8. doi: https://doi.org/10.1016/s0176-1617(99)80133-3

Sumaryono, Wirdhatul, M., & Ratnadewi, D. (2012). Effect of carbohydrate source on growth and performance of In Vitro sago palm (Metroxylon sagu Rottb.) plantlets. HAYATI Journal of Biosciences, 19(2), 88–92. doi: https://doi.org/10.4308/hjb.19.2.88

Tholakalabavi, A., Zwiazek, J. J., & Thorpe, T. A. (1994). Effect of mannitol and glucose-induced osmotic stress on growth, water relations, and solute composition of cell suspension cultures of poplar (Populus deltoides var. occidentalis) in relation to anthocyanin accumulation. In Vitro Cellular & Developmental Biology-Plant, 30(3), 164–170. doi: https://doi.org/10.1007/bf02632208

Thorpe,T., Stasolla, C., Yeung, E.C., de Klerk, G-J., Roberts, A., George, E. F. (2008). The components of plant tissue culture media II: organic additions, osmotic and pH effects, and support systems. In E. F. George, M. A. Hall, & G.-J. de Klerk (Eds.), Plant propagation by tissue culture (pp. 115–173). Netherlands: Springer. doi: https://doi.org/10.1007/978-1-4020-5005-3_3

Varshney, A., & Anis, M. (2014). Trees: Propagation and Conservation. New Delhi, India: Springer. doi: https://doi.org/10.1007/978-81-322-1701-5

Yancheva, S. D., & Roichev, V. (2005). Carbohydrate source can influence the efficiency of somatic embryogenesis in seedless grapes (Vitis vinifera L.). Biotechnology & Biotechnological Equipment, 19(2), 62–66. doi: https://doi.org/10.1080/13102818.2005.10817192

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2019 Revista Chapingo Serie Ciencias Forestales y del Ambiente