Revista Chapingo Serie Ciencias Forestales y del Ambiente
Compatible taper, volume, green weight, biomass and carbon concentrationsystem for Quercus sideroxyla Bonpl.
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

merchantable volume
stem volume
branch volume
aboveground biomass
greenweight

How to Cite

Quiñonez-Barraza, G., Zhao, D., de los Santos-Posadas, H. M., Santiago-García, W., Tamarit-Urias, J. C. ., & Nájera-Luna, J. A. (2018). Compatible taper, volume, green weight, biomass and carbon concentrationsystem for Quercus sideroxyla Bonpl. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 25(1), 49–69. https://doi.org/10.5154/r.rchscfa.2018.06.050

##article.highlights##

  • Green weight, biomass and carbon concentration can be estimated from volume equations.
  • Wood density can be used in compatible taper-volume systems.
  • Fitting statistics showed the accuracy of the equations by relative height classes.
  • Volume, biomass and carbon equations can be used to estimate forest inventories.

Abstract

Introduction: Estimation of total and merchantable tree volume, as well as of biomass andcarbon, implies the generation of biometric tools essential in forest management and planning.
Objectives:   To   fit   a   compatible   taper,   volume,   green   weight,   dry   biomass   and   carbonconcentration system for Quercus sideroxyla Bonpl. species using wood density.
Materials and methods: A database of 522 diameter-height measurements, obtained from 37 trees, was used in the fitting equations. The compatible system (CS) was integrated by 34 equations, which were simultaneously fitted by generalized nonlinear least squares. Taper andvolume   were   the   base   variables   for   estimating   green   weight,   dry   biomass   and   carbonconcentration.
Results and discussion: All equations were compatible with the stem volume equation, andthe   merchantable   equations   with  the   taper   and   merchantable   volume   equations.   The   fitstatistics showed the efficiency of the equations in global terms and by relative height classes.
Conclusions: The CS  has the property  of  estimating  taper,  merchantable  volume,  greenweight, dry biomass and carbon concentration at upper-height and by components (stem, totaltree and branches).

https://doi.org/10.5154/r.rchscfa.2018.06.050
PDF

References

Aquino-Ramírez, M., Velázquez-Martínez, A., Echevers-Barra, J. D., & Castellanos-Bolaños, J. F. (2018). Carbon concentration in three species of tropical trees in the Sierra Sur of Oaxaca Mexico. Agrociencia, 52(3), 455–465. Retrieved from http://www.colpos.mx/agrocien/Bimestral/2018/abr-may/abr-may-18.html

Bailey, R. L. (1995). Upper stem volumes from stem analysis data: An overlapping bolts method. Canadian Journal of Forest Research, 25(1), 170–173. doi: https://doi.org/10.1139/x95-020

Brooks, J. R., Jiang, L., & Clark III, A. (2007). Compatible stem taper, volume, and weight equations for young longleaf pine plantations in Southwest Georgia. Southern Journal of Applied Forestry, 31(4), 187–191. doi: https://doi.org/10.1093/sjaf/31.4.187

Brooks, J. R., Jiang, L., & Zhang, Y. (2007). Predicting green and dry mass of yellow-poplar: An integral approach. Canadian Journal of Forest Research, 37(4), 786–794. doi: https://doi.org/10.1139/x06-210

Calegario, N., Gregoire, T. G., da Silva, T. A., Tomazello, F. M., & Alves, J. A. (2017). Integrated system of equations for estimating stem volume, density, and biomass for Australian redcedar (Toona ciliata) plantations. Canadian Journal of Forest Research, 47(5), 681–689. doi: https://doi.org/10.1139/cjfr-2016-0135

Corral-Rivas, J., Vega-Nieva, D., Rodríguez-Soalleiro, R., López-Sánchez, C., Wehenkel, C., Vargas-Larreta, B., . . . Ruiz-González, A. (2017). Compatible system for predicting total and merchantable stem volume over and under bark, branch volume and whole-tree volume of pine Species. Forests, 8(11), 417. doi: https://doi.org/10.3390/f8110417

Fang, Borders, E., & Bailey, L. (2000). Compatible volume-taper models for Loblolly and Slash Pine based on a system with segmented-stem form factors. Forest Science, 46(1), 1–12. doi: https://doi.org/10.1093/forestscience/46.1.1

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen (5.a ed.). México: Universidad Autónoma Nacional de México, Instituto de Geografía.

Jiang, L., & Brooks, J. R. (2008). Taper, volume, and weight equations for Red Pine in west Virginia. Northern Journal of Applied Forestry, 25(3), 151–153. doi: https://doi.org/10.1093/njaf/25.3.151

Jordan, L., Souter, R., Parresol, B., & Daniels, R. F. (2006). Application of the algebraic difference approach for developing self-referencing specific gravity and biomass equations. Forest Science, 52(1), 81–92. doi: https://doi.org/10.1093/forestscience/52.1.81

Kozak, A., & Smith, J. H. G. (1993). Standards for evaluating taper estimating systems. The Forestry Chronicle, 69(4), 438–444. doi: https://doi.org/10.5558/tfc69438-4

Miles, P. D., & Smith, W. B. (2009). Specific gravity and other properties of wood and bark for 156 tree species found in North America (vol. 38). USA: US Department of Agriculture, Forest Service, Northern Research Station. Retrieved from https://www.fs.usda.gov/treesearch/pubs/34185

Nájera, L. J. A., Escárpita, B. J. L., Honorato, S. J. A., Hernández, F. J., Graciano, J. J., & de la Cruz, C. R. (2007). Physical and mechanical properties of wood in Quercus sideroxyla Hump & Bonpl of El Salto, Durango. TecnoINTELECTO, 4(1), 13–18. Retrieved from https://www.researchgate.net/publication/242242832_PROPIEDADES_FISICOMECANICAS_DE_LA_MADERA_EN_Quercus_sideroxyla_Hump_Bonpl_DE_LA_REGION_DE_EL_SALTO_DURANGO_Physical_and_mechanical_properties_of_wood_in_Quercus_sideroxyla_Hump_Bonpl_of_El_Salto_Duran

Návar, J. (2009). Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. Forest Ecology and Management, 257(2), 427–434. doi: https://doi.org/10.1016/j.foreco.2008.09.028

Ordóñez-Díaz, J. A. B., Galicia-Naranjo, A., Venegas-Mancera, N. J., Hernández-Tejeda, T., Ordóñez-Díaz, M. d. J., & Dávalos-Sotelo, R. (2015). Densidad de las maderas mexicanas por tipo de vegetación con base en la clasificación de J. Rzedowski: compilación. Madera y Bosques, 21, 77–216. Retrieved from http://www.scielo.org.mx/pdf/mb/v21nspe/v21nspea6.pdf

Özçelik, R., & Cao, Q. V. (2017). Evaluation of fitting and adjustment methods for taper and volume prediction of Black Pine in Turkey. Forest Science, 63(4), 349–355. doi: https://doi.org/10.5849/FS.2016-067

Özçelik, R., & Crecente-Campo, F. (2016). Stem taper equations for estimating merchantable volume of Lebanon Cedar trees in the Taurus Mountains, southern Turkey. Forest Science, 62(1), 78–91. doi: https://doi.org/10.5849/forsci.14-212

Pajtík, J., Konôpka, B., & Lukac, M. (2008). Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. Forest Ecology and Management, 256(5), 1096–1103. doi:10.1016/j.foreco.2008.06.013

Parresol, B. R. (1999). Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science, 45(4), 573–593. doi: https://doi.org/10.1093/forestscience/45.4.573

Parresol, B. R. (2001). Additivity of nonlinear biomass equations. Canadian Journal of Forest Research, 31(5), 865–878. doi: https://doi.org/10.1139/x00-202

Parresol, B. R., & Thomas, C. E. (1989). A density-integral approach to estimating stem biomass. Forest Ecology and Management, 26(4), 285–297. doi:10.1016/0378-1127(89)90089-3

Parresol, B. R., & Thomas, C. E. (1996). A simultaneous density-integral system for estimating stem profile arid biomass: slash pine and willow oak. Canadian Journal of Forest Research, 26(5), 773–781. doi: https://doi.org/10.1139/x26-087

Pérez-Olvera, C. d. l. P., & Dávalos-Sotelo, R. (2008). Algunas características anatómicas y tecnológicas de la madera de 24 especies de Quercus (encinos) de México. Madera y Bosques, 14(3), 43–80. Retrieved from http://www.redalyc.org/articulo.oa?id=61712189003

Pérez, O. C. P., Dávalos-Sotelo, R., Limón, G., R., & Quintanar, I. P. A. (2015). Características tecnológicas de la madera de dos especies de Quercus de Durango, México. Madera y Bosques, 21(3), 19–46. Retrieved from http://www.scielo.org.mx/pdf/mb/v21n3/v21n3a2.pdf

Quiñonez-Barraza, G., De los Santos-Posadas, H. M., Álvarez-González, J. G., & Velázquez-Martínez, A. (2014). Compatible taper and merchantable volume system for major pine species in Durango, Mexico. Agrociencia, 48(5), 553–567. Retrieved from http://www.scielo.org.mx/pdf/agro/v48n5/v48n5a8.pdf

SAS Institute Inc. (2015). Base SAS 9.4® Procedures Guide: Statistical Procedure (3rd ed.). Cary, NC, USA: Author. Retrieved from https://support.sas.com/documentation/cdl/en/procstat/67528/PDF/default/procstat.pdf

Schumacher, F. X. (1933). Logarithmic expression of timber-tree volume. Journal of Agricultural Research, 47(9), 719–734. Retrieved from https://naldc.nal.usda.gov/download/IND43968352/PDF

Silva-Arredondo, F. M., & Návar-Cháidez, J. J. (2009). Estimación de factores de expansión de carbono en comunidades forestales templadas del norte de Durango, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 15(2), 155–163. Retrieved from https://www.chapingo.mx/revistas/forestales/contenido.php?seccion=numero&id_revista_numero=40

Simental-Cano, B., López-Sánchez, C. A., Wehenkel, C., Vargas-Larreta, B., Álvarez-González, J. G., & Corral-Rivas, J. J. (2017). Species-specific and regional volume models for 12 forest species in Durango, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23(2), 155–171. doi: https://doi.org/10.5154/r.rchscfa.2016.01.004

Valenzuela, C., Acuña, E., Ortega, A., Quiñonez-Barraza, G., Corral-Rivas, J., & Cancino, J. (2018). Variable-top stem biomass equations at tree-level generated by a simultaneous density-integral system for second growth forests of roble, raulí, and coigüe in Chile. Journal of Forestry Research. doi: https://doi.org/10.1007/s11676-018-0630-9

Vargas-Larreta, B., Corral-Rivas, J. J., Aguirre-Calderón, O. A., López-Martínez, J. O., De los Santos-Posadas, H. M., Zamudio-Sánchez, F. J., . . . Aguirre-Calderón, C. G. (2017). SiBiFor: Forest Biometric System for forest management in Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23(3), 437–455. doi: https://doi.org/10.5154/r.rchscfa.2017.06.040

Vargas-Larreta, B., López-Sánchez, C. A., Corral-Rivas, J. J., López-Martínez, J. O., Aguirre-Calderón, C. G., & Álvarez-González, J. G. (2017). Allometric equations for estimating biomass and carbon stocks in the temperate forests of north-western Mexico. Forests, 8(8), 269. doi: https://doi.org/10.3390/f8080269

Ver Planck, N. R., & MacFarlane, D. W. (2015). A vertically integrated whole-tree biomass model. Trees, 29(2), 449–460. doi: https://doi.org/10.1007/s00468-014-1123-x

Williams, M. S., & Reich, R. M. (1997). Exploring the error structure of taper equations. Forest Science, 43(3), 378-386. doi: https://doi.org/10.1093/forestscience/43.3.378

Zakrzewski, W. T., & Duchesne, I. (2012). Stem biomass model for jack pine (Pinus banksiana Lamb.) in Ontario. Forest Ecology and Management, 279(1), 112–120. doi: https://doi.org/10.1016/j.foreco.2012.05.012

Zhang, Y., Borders, B. E., & Bailey, R. L. (2002). Derivation, fitting, and implication of a compatible stem taper-volume-weight system for intensively managed, fast growing Loblolly pine. Forest Science, 48(3), 595–607. doi: https://doi.org/10.1093/forestscience/48.3.595

Zhao, D., Kane, M., Markewitz, D., Teskey, R., & Clutter, M. (2015). Additive tree biomass equations for midrotation Loblolly pine plantations. Forest Science, 61(4), 613–623. doi: https://doi.org/10.5849/forsci.14-193

Zhao, D., Kane, M., Teskey, R., & Markewitz, D. (2016). Modeling aboveground biomass components and volume-to-weight conversion ratios for Loblolly pine trees. Forest Science, 62(5), 463–473. doi: https://doi.org/10.5849/forsci.15-129

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2019 Revista Chapingo Serie Ciencias Forestales y del Ambiente