Revista Chapingo Serie Ciencias Forestales y del Ambiente
A methodology for the characterization of land use using medium-resolution spatial images
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Remote sensing
NDVI series
MODIS satellite
Landsat satellite
phenological signature

How to Cite

Guevara-Ochoa, C. ., Lara, B., Vives, L., Zimmermann, E., & Gandini, M. (2018). A methodology for the characterization of land use using medium-resolution spatial images. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 24(2), 207–218. https://doi.org/10.5154/r.rchscfa.2017.10.061

##article.highlights##

  • Land use was characterized in the upper creek basin of Del Azul in Buenos Aires, Argentina.
  • The characterization was carried out using satellite images (MODIS and Landsat) of medium spatial resolution.
  • Seven land cover were discriminated; the double-crop wheat-soybean system was predominant (39.4 %).
  • The overall accuracy of the final map obtained was high (88.9 %).
  • The methodology used is fast and low cost to characterize land cover and land uses.

Abstract

Introduction: The characterization of land uses represents one of the essential inputs for the management of natural resources at different scales.
Objective: To develop a methodology to characterize land use in the upper creek basin from the Azul stream (Buenos Aires, Argentina), through the fusion of satellite images with a medium spatial resolution.
Materials and methods: A time-series of 23 images was used from the Normalized Difference Vegetation Index (NDVI) of the MODIS-Terra satellite (product MOD13Q1) for the period May 2015 - May 2016. Landsat 8 images were used to discriminate some categories difficult to classify with NDVI-MODIS. The final cover map was validated regarding verification points independent to the classification process; its accuracy was evaluated by means of the Kappa statistic.
Results and discussion: The NDVI time series allowed to recognize the phenological patterns of the covers and land use of greater representativeness in the region. Seven land cover were discriminated; the agricultural uses represented 81.5 % of the surface, double-crop wheat-soya (soybean in Argentina) system predominated (39.4 %). The overall accuracy of the final map was high (88.9 %, Kappa coefficient = 0.86).
Conclusion: The methodology used has the advantage of being quick and replicable, to characterize the land uses of a given region and to evaluate its potential changes over time.

https://doi.org/10.5154/r.rchscfa.2017.10.061
PDF
ePUB

References

Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch, S. L. (2012). Soil & water assessment tool. Input/Output documentation version 2012. Retrieved from http://swat.tamu.edu/media/69296/SWAT-IO-Documentation-2012.pdf

Baldi, G., Guerschman, J. P., & Paruelo, J. M. (2006). Characterizing fragmentation in temperate South America grasslands. Agriculture, Ecosystems and Environment, 116(3-4), 197–208. doi: https://doi.org/10.1016/j.agee.2006.02.009

Blanco, P. D., Colditz, R. R., López, S. G., Hardtke, L. A., Llamas, R. M., Mari N. A., …Arroyo, V. B. (2013). A land cover map of Latin America and the Caribbean in the framework of the SERENA project. Remote Sensing of Environment, 132, 13–31. doi: https://doi.org/10.1016/j.rse.2012.12.025

Breuer, L., Huisman, J. A., Willems, P., Bormann, H., Bronstert, A., Croke, B. F. W., & Kite, G. (2009). Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use. Advances in Water Resources, 32(2), 129–146. doi: https://doi.org/10.1016/j.advwatres.2008.10.003

Cabello, J., & Paruelo, J. M. (2008). La teledetección en estudios ecológicos. Ecosistemas, 17(3), 1–3. Retrieved from https://www.revistaecosistemas.net/index.php/ecosistemas/article/viewFile/77/74

Chuvieco, E. (1990). Fundamentos de teledetección espacial. Madrid, España: Ed. Rialp, S. A.

Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. doi: https://doi.org/10.1016/0034-4257(91)90048-B

DeFries, R., & Eshleman, K. N. (2004). Land-use change and hydrologic processes: a major focus for the future. Hydrological Processes, 18(11), 2183–2186. doi: https://doi.org/10.1002/hyp.5584

Eitzinger, J., Orlandini, S., Stefanski, R., & Naylor, R. E. L. (2010). Climate change and agriculture: introductory editorial. Journal of Agricultural Science, 148(5), 499–500. doi: https://doi.org/10.1017/S0021859610000481

Eva, H., Belward A., De Miranda E., Di Bella C., Gond V., Huber O., …Fritz, S. (2004). A land cover map of South America. Global Change Biology, 10(5), 731–744. doi: https://doi.org/10.1111/j.1529-8817.2003.00774.x

Fohrer, N., Haverkamp, S., Eckhardt, K., & Frede, H. G. (2001). Hydrologic response to land use changes on the catchment scale. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(7-8), 577–582. doi: https://doi.org/10.1016/S1464-1909(01)00052-1

Guerschman, J. P., Paruelo, J. M., & Burke, I. (2003). Land use impacts on the normalized difference vegetation index in temperate Argentina. Ecological Applications, 13(3), 616–628. doi: https://doi.org/10.1890/1051-0761(2003)013[0616:luiotn]2.0.co;2

Horning, N., Robinson, J., Sterling, E., Turner, W., & Spector, S. (2010). Remote sensing for ecology and conservation: A handbook of techniques. New York, USA: Oxford University.

Lara, B., & Gandini, M. (2014). Quantifying the land cover changes and fragmentation patterns in the Argentina Pampas, in the last 37 years (1974-2011). GeoFocus, 14, 163–180. Retrieved from http://geofocus.rediris.es/2014/Articulo9_2014.pdf

Lara, B., & Gandini, M. (2016). Caracterización del comportamiento fenológico de las coberturas vegetales en un sector de la Pampa Deprimida (Argentina): una aproximación utilizando series temporales de NDVI. Ambiência, 12(4), 765–783. doi: https://doi.org/10.5935/ambiencia.2016.04.01

Li, Z., Liu, W. Z., Zhang, X. C., & Zheng, F. L. (2009). Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. Journal of Hydrology, 377(1), 35–42. doi: https://doi.org/10.1016/j.jhydrol.2009.08.007

Manuel-Navarrete, D., Gallopin, G. C., Blanco, M., Díaz-Zorita, M., Ferraro, D. O., Herzer, H., …Viglizzo, E. F. (2009). Multicausal and integrated assessment of sustainability: The case of agriculturization in the Argentine Pampas. Environment, Development and Sustainability, 11(3), 621–638. doi: https://doi.org/10.1007/s10668-007-9133-0

Matteucci, S. (2012). Ecorregión Pampa. In J. Morello, S. Matteucci, A. Rodríguez, & M. Silva (Eds.), Ecorregiones y complejos ecosistémicos argentinos (pp. 391–446). Buenos Aires, Argentina: Orientación Gráfica Editora. Retrieved from https://www.researchgate.net/profile/Silvia_Matteucci/publication/268447997_Ecorregion_Pampa/links/54f608650cf2ca5efefdace9.pdf

Müller, D., & Munroe, D. K. (2014). Current and future challenges in land-use science. Journal of Land Use Science, 9(2), 133–142. doi: https://doi.org/10.1080/1747423X.2014.883731

Murty, D., Kirschbaum, M. U., Mcmurtrie, R. E., & Mcgilvray, H. (2002). Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology, 8(2), 105–123. doi: https://doi.org/10.1046/j.1354-1013.2001.00459.x

Paruelo, J. M. (2008). La caracterización funcional de ecosistemas mediante sensores remotos. Ecosistemas, 17(3), 4–22. Retrieved from http://revistaecosistemas.net/index.php/ecosistemas/article/view/83

Pettorelli, N., Wegmann, M., Skidmore, A., Sander, M., Dawson, T. P., Fernandez, M., …Penner, J. (2016). Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sensing in Ecology and Conservation, 2(3), 122–131. doi: https://doi.org/10.1002/rse2.15

Post, W. M., & Kwon, K. C. (2000). Soil carbon sequestration and land‐use change: processes and potential. Global Change Biology, 6(3), 317–327. doi: https://doi.org/10.1046/j.1365-2486.2000.00308.x

Reed, B. C., Schwartz, M. D., & Xiangming X. (2009). Remote sensing phenology: Status and the way forward. In A. Noormets (Ed.), Phenology of ecosystem processes (pp. 231–246). New York, USA: Springer. doi: https://doi.org/10.1007/978-1-4419-0026-5_10

Sistema Integrado de Información Agropecuaria (SIIA). (2016). Retrieved June 19, 2017, from http://www.agroindustria.gob.ar/datosagroindustriales/

Solano, R., Didan, K., Jacobson A., & Huete, A. (2010). MODIS Vegetation Index User’s Guide (MOD13 Series) C5. Retrieved from https://vip.arizona.edu/documents/MODIS/MODIS_VI_UsersGuide_01_2012.pdf

Tou, J. T., & Gonzalez, R. C. (1974). Pattern recognition principles. Massachusetts, USA: Addison-Wesley Publishing Company.

Viglizzo, E. F., Roberto, Z. E., Lértora, F., Gay, E. L., & Bernardos, J. (1997). Climate and land-use change in field-crop ecosystems of Argentina. Agriculture, Ecosystems & Environment, 66(1), 61–70. doi: https://doi.org/10.1016/S0167-8809(97)00079-0

Wang, Q., Tenhunen, J., Dinh, N. Q., Reichstein, M., Vesala, T., & Keronen, P. (2004). Similarities in ground- and satellite-based NDVI time series and their relationship to physiological activity of a Scots pine forest in Finland. Remote Sensing of Environment, 93(1-2), 225–237. doi: https://doi.org/10.1016/j.rse.2004.07.006

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Revista Chapingo Serie Ciencias Forestales y del Ambiente