Revista Chapingo Serie Ciencias Forestales y del Ambiente
Environmental functions of smallholder farmer land classes in the Zicuirán-Infiernillo Biosphere Reserve, Mexico
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

soil profile
Barrosa class
Charanda class
soil suitability
soil functions

How to Cite

Bedolla-Ochoa, C., Bautista, F., & Gallegos-Tavera, Ángeles. (2018). Environmental functions of smallholder farmer land classes in the Zicuirán-Infiernillo Biosphere Reserve, Mexico. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 24(3), 265–274. https://doi.org/10.5154/r.rchscfa.2017.09.058

##article.highlights##

  • Land classes: Barrosa, Polvilla, Charanda, Tocura, Cementante, Polvilla/Barrosa and Polvilla/Charanda.
  • Soil functions: water and nutrient cycle; food and biomass production; habitat for flora, fauna and human life; rainfall infiltration.
  • Soil & Environment ® software was used to evaluate soil functions.
  • The Barrosa and Charanda land classes have greater potential in terms of their environmental functions.
  • These classes correspond to the area with the largest human settlements, which could cause inconveniences.

Abstract

Introduction: There are few cases in which the environmental functions of soils have been quantitatively evaluated using data from soil profile descriptions.
Objective: The environmental functions of seven peasants land classes (Barrosa, Polvilla, Charanda, Tocura, Cementante, Polvilla/Barrosa and Polvilla/Charanda) in the Zicuirán-Infiernillo biosphere, Mexico, were evaluated in order to propose a more rational use of the soils.
Materials and methods: Soil & Environment® software was used to evaluate the soil function in the water cycle, food and biomass production, nutrient cycle, habitat for flora and fauna, habitat for human life and torrential rainfall infiltration.
Results and discussion: The Barrosa land class, distributed in the valley, has the most suitable environmental levels, followed by the Polvilla-Barrosa class with very high capacity in terms of torrential rainfall infiltration, and the Tocura and Polvilla-Charanda classes with high suitability in the same environmental function. Next is the Charanda class, suitable for the production of food and biomass and as a component of the nutrient cycle; finally, with more restricted suitability, in general terms, there is the Polvilla class that stands out as a flora and fauna habitat.
Conclusion: The Barrosa and Charanda land classes have the greatest potential as food and biomass producers, and as a component of the nutrient cycle; however, these classes correspond to the area with the largest human settlements, which could cause problems in the supply of agricultural and livestock products.

https://doi.org/10.5154/r.rchscfa.2017.09.058
PDF
ePUB

References

Bautista, F., Gallegos, T. A., & Álvarez, A. O. (2015). La evaluación automatizada de las funciones ambientales del suelo con base en datos de perfiles. México: Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México. Retrieved from http://www.ciga.unam.mx/publicaciones/images/abook_file/978-607-02-6600-3.pdf

Bautista, F., Gallegos, A., & Pacheco, A. (2016). Analysis of the environmental functions of soil profile data (Soil & Environment). México: Skiu. Retrieved from https://www.researchgate.net/publication/301221717_Analysis_of_the_environmental_functions_with_soil_profile_data_Soil_Environment

Bautista, F., & Zinck, A. J. (2010). Construction of an Yucatec Maya soil classification and comparison with the WRB framework. Journal Ethnobiology Ethnomed, 6(7), 1–11. doi: https://doi.org/10.1186/1746-4269-6-7

Banwart, S., Menon, M., Bernasconi, S. M., Bloem, J., Blum, W. E., de Souza, D. M., ...Zhang, B. (2012). Soil processes and functions across an international network of Critical Zone Observatories: Introduction to experimental methods and initial results. Comptes Rendus Geoscience, 344(11), 758–772. doi: https://doi.org/10.1016/j.crte.2012.10.007

Bouma, J. (2009). Soils are back on the global agenda: Now what? Geoderma, 150, 224–225. doi: https://doi.org/10.1016/j. geoderma.2009.01.015

Blum, W. E. H. (2005). Functions of soil for society and the environment. Reviews in Environmental Science and Bio/Technology, 4, 75–79. doi: https://doi.org/10.1007/s11157-005-2236-x

Brady, N. C., & Weil, R. R. (1999). The nature and properties of soils (20th ed). Upper Saddle River, NJ, USA: Prentice Hall.

Comisión Nacional del Agua (CONAGUA). (2000). Servicio meteorológico nacional; datos climatológicos 1971-2000. Retrieved April 28, 2015, from http://smn.cna.gob.mx/climatologia/normales/estacion/mich/NORMAL16047.TXT

De la Rosa, D., Mayol, F., Díaz-Pereira, E., Fernández, M., & De la Rosa, D. (2004). A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection: With special reference to the Mediterranean region. Environmental Modeling & Software, 19(10), 929–942. doi: https://doi.org/10.1016/j.envsoft.2003.10.006

Environmental Systems Research Institute (ESRI). (2009). ArcMap 9.3.1. ArcGIS Resource Center. Redlands, California, USA: Author.

Food and Agriculture Organization of the United Nations (FAO). (1999). The future of our land: Facing the challenge. Rome, Italy: FAO-UNEP. Retrieved from http://www.fao.org/docrep/004/x3810e/x3810e00.htm

Food and Agriculture Organization of the United Nations (FAO). (2006). Guidelines for soil description (4th ed.). Rome, Italy: Author.

Food and Agriculture Organization of the United Nations (FAO). (2009). Guía para la descripción de suelos. Roma, Italia: Autor. Retrieved from de www.fao.org/3/a-a0541s.pdf

Gallegos, A., Bautista, F., & Dubrovin, I. (2016). Suelo y ambiente: Software para evaluar las funciones ambientales de los suelos. Software & Systems, 114(2), 195–200. doi: https://doi.org/10.15827/0236-235x.114.195-200

Lehmann, A. (2006). Technosols and other proposals on urban soils for the WRB (World reference base for soil resources). International Agrophysics, 20(2), 129–134. Retrieved from http://www.old.international-agrophysics.org/artykuly/ international_agrophysics/IntAgr_2006_20_2_129.pdf

Lehmann, A., David, S., & Stahr, K. (2008). TUSEC-Technique for soil evaluation and categorization for natural and anthropogenic soils. Germany: Universitat Hohenheim Bodenkundliche Hefte.

Lehmann, A., & Stahr, K. (2010). The potential of soil functions and planner-oriented soil evaluation to achieve sustainable land use. Journal of Soils and Sediments, 10(6), 1092–1102. doi: https://doi.org/10.1007/s11368-010-0207-5

Liang, S., Lehmann, A., Wu, K., & Stahr, K. (2014). Perspectives of function-based soil evaluation in land-use planning in China. Soils Sediments, 14, 10–22 doi: https://doi.org/10.1007/s11368-013-0787-y

Nethononda, L. O., & Odhiambo, J. J. O. (2011). Indigenous soil knowledge relevant to crop production of smallholder farmers at Rambuda irrigation scheme, Vhembe District South Africa. African Journal of Agricultural Research, 6(11), 2576–258. doi: https://doi.org/10.5897/AJAR10.1170

Segura-Castruita, M. A., Sánchez-Guzmán, P., Ortiz-Solorio, C. A., & Gutiérrez-Castorena, M. C. (2005). Carbono orgánico de los suelos de México. Terra Latinoamericana, 23(1), 21–28. Retrieved from http://www.redalyc.org/pdf/573/57323103.pdf

Segura-Castruita, M. A., Martínez-Corral, L., García-Barrientos, E., Huerta-García, A., García-Hernández, J. L., Fortis-Hernández, M., …Preciado-Rangel, P. (2011). Localization of local soil classes in an arid region of Mexico, using satellite imagery. International Journal of Remote Sensing, 33(1), 184–197, doi: https://doi.org/10.1080/01431161.2011.588630

Siebe, C., Janh, R., & Stahr, K. (2006). Manual para la descripción y evaluación ecológica de suelos en el campo. México: Sociedad Mexicana de la Ciencia del Suelo.

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2002). Norma Oficial Mexicana NOM-021-SEMARNAT-2000. Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudio, muestreo y análisis. México: Diario Oficial de la Federación. Retrieved from http://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/libros2009/DO2280n.pdf

United States Department of Agriculture (USDA). (2014). Kellogg Soil Survey Laboratory. Methods Manual. Soil Survey Investigations Report No. 42. Version 5.0. Retrieved from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1253872.pdf

IUSS Working Group WRB. (2006). World reference base for soil resources 2006. Rome: FAO. Retrieved from www.fao.org/3/a-a0510e.pdf

Zinck, J. A., Metternicht, G., Bocco, G., & Del Valle, H. F. (2016). Geopedology. An integration of geomorphology and pedology for soil and landscape studies. Springer International Publishing Switzerland. doi: https://doi.org/10.1007/978-3-319-19159-1

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2018 Revista Chapingo Serie Ciencias Forestales y del Ambiente