Revista Chapingo Serie Ciencias Forestales y del Ambiente
Effect of fire and elevation on the regeneration of Pinus hartwegii Lindl. in northeastern Mexico
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

density of pine trees
fire scars
altitudinal migration
El Potosí mountain

How to Cite

Cortés-Cabrera, H. E. ., Jurado, E. ., Pompa-García, M. ., Aguirre-Calderón, O. A. ., Pando-Moreno, M., & González-Tagle, M. A. (2018). Effect of fire and elevation on the regeneration of Pinus hartwegii Lindl. in northeastern Mexico. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 24(2), 197–205. https://doi.org/10.5154/r.rchscfa.2017.09.057

##article.highlights##

  • The study was carried out in the mountain El Potosí, Nuevo León, México.
  • Pinus hartwegii regeneration was studied at the following altitudinal ranges 3 050, 3 225 and 3 400 m.
  • Adult pine and sapling densities were higher at the lower elevations.
  • Density of pine trees with fire scars was similar at all three elevations.
  • No correlation was detected between regeneration and number of pine trees with fire scars.

Abstract

Introduction: Fire regimes and climate change affect the regeneration of vegetation, composition and abundance of species.
Objectives: To compare P. hartwegii regeneration and the number of trees with fire scars at different elevations; and determine whether regeneration is related to the density of adult trees and to the density of pine trees with fire evidence.
Materials and methods: P. hartwegii regeneration was studied at the altitudinal ranges 3 050, 3 225 and 3 400 m in the mountain El Potosí located in northeastern Mexico. Adult trees were sampled using the point-centered quarter method and saplings on square plots.
Results and discussion: Density of adult pine trees and seedlings was higher at the low elevations (3 050 and 3 225 m). Density of pine trees with fire scars was similar (P > 0.05) at the three elevations. No correlation was detected between regeneration and number of pine trees with fire scars, but there was a positive correlation between density of seedlings and that of adult pines
Conclusion: Altitude influences regeneration and density of P. hartwegii adult trees. Its regeneration is not related to fire evidence.

https://doi.org/10.5154/r.rchscfa.2017.09.057
PDF
ePUB

References

Aguirre-Calderón, O. A, Jiménez-Pérez, J., Kramer, H., & Akça, A. (2003). Análisis estructural de ecosistemas forestales en el Cerro del Potosí, Nuevo León, México Ciencia UANL, 6(2), 219–225. Retrieved from http://eprints.uanl.mx/1220/1/analisisecosistemas.pdf

Instituto Nacional de Estadística, Geografía e Informática (INEGI). (1986). Síntesis geográfica del estado de Nuevo León. México: Autor. Retrieved from http://internet.contenidos.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/historicos/2104/702825220747/702825220747_1.pdf

Ávila-Flores, D. Y., González-Tagle, M. A., Jiménez-Pérez, J., Aguirre-Calderón, O. A., Treviño-Garza, E. J., & Vargas-Larreta, B. (2014). Dendrochronopyrology: analysis of the morphological evidence of forest fires. Revista Mexicana de Ciencias Forestales, 5(21), 136–147. Retrieved from http://www.scielo.org.mx/scielo.php?pid=S2007-11322014000100010&script=sci_arttext&tlng=en

Baskin, C. C., & Baskin, J. M. (1998). Seeds: Ecology, biogeography, and, evolution of dormancy and germination. San Diego, USA: Academic Press.

Bosch, O., Giné, L., Ramadori, E. D., Bernat, A., & Gutiérrez, E. (1992). Disturbance, age and size structure in stands of Pinus uncinata Ram. Pirineos, 140, 5–14. doi: https://doi.org/10.3989/pirineos.1992.v140.168

Chambers, M. E., Fornwalt, P. J., Malone, S. L., & Battaglia, M. A. (2016). Patterns of conifer regeneration following high severity wildfire in ponderosa pine–dominated forests of the Colorado Front Range. Forest Ecology and Management, 378, 57–67. doi: https://doi.org/10.1016/j.foreco.2016.07.001

Christopoulou, A., Fyllas, N. M., Andriopoulos, P., Koutsias, N., Dimitrakopoulos, P. G., & Arianoutsou, M. (2014). Post-fire regeneration patterns of Pinus nigra in a recently burned area in Mount Taygetos, Southern Greece: The role of unburned forest patches. Forest Ecology and Management, 327, 148–156. doi: https://doi.org/10.1016/j.foreco.2014.05.006

Cottam, G., & Curtis, J. T. (1956). The use of distance measures in phytosociological sampling. Ecology, 37(3), 451–460. doi: https://doi.org/10.2307/1930167

Erickson, A., Nitschke, C., Coops, N., Cumming, S., & Stenhouse, G. (2015). Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada. Ecological Modelling, 313, 94–102. doi: https://doi.org/10.1016/j.ecolmodel.2015.06.027

García, A. M. A., Treviño-Garza, E. J., Cantú-Ayala, C. M., & González-Saldívar, F. N. (1999). Zonificación ecológica del cerro "El Potosí", Galeana, Nuevo León, México. Investigaciones Geográficas, 38, 31–40. Retrieved from http://www.scielo.org.mx/pdf/igeo/n38/n38a4.pdf

Gutiérrez, E., & Trejo, I. (2014). Efecto del cambio climático en la distribución potencial de cinco especies arbóreas de bosque templado en México. Revista Mexicana de Biodiversidad, 85(1), 179–188. doi: https://doi.org/10.7550/rmb.37737

Han, J., Shen, Z., Ying, L., Li, G., & Chen, A. (2015). Early post-fire regeneration of a fire-prone subtropical mixed Yunnan pine forest in Southwest China: Effects of pre-fire vegetation, fire severity and topographic factors. Forest Ecology and Management, 356, 31–40. doi: https://doi.org/10.1016/j.foreco.2015.06.016

Holtmeier, F. K., & Broll, G. (2005). Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology and Biogeography, 14(5), 395–410. doi: https://doi.org/10.1111/j.1466-822X.2005.00168.x

Kemp, K. B., Higuera, P., & Morgan, P. (2016). Fire legacies impact conifer regeneration across environmental gradients in the US northern Rockies. Landscape Ecology, 31(3), 619–636. doi: https://doi.org/10.1007/s10980-015-0268-3

Man, R., Rice, J. A., & MacDonald, G. B. (2009). Long-term response of planted conifers, natural regeneration, and vegetation to harvesting, scalping, and weeding on a boreal mixed wood site. Forest Ecology and Management, 258(7), 1225–1234. doi: https://doi.org/10.1016/j.foreco.2009.06.012

Mitchell, K. (2007). Quantitative analysis by the point-centered quarter method. Geneva, NY: Hobart and William Smith Colleges. Retrieved from http://arxiv.org/pdf/1010.3303.pdf

Omi, P. N. (2005). Forest fires: A reference handbook. Santa Barbara, CA, USA: ABC-CLIO.

Parro, K., Köster, K., Jogiste, K., & Vodde, F. (2009). Vegetation dynamics in a fire damaged forest area: the response of major ground vegetation species. Baltic Forestry, 15(2), 206–215. Retrieved from https://www.balticforestry.mi.lt/bf/PDF_Articles/2009-15[2]/206_215%20Parro%20et%20al.pdf

Petrie, M. D., Wildeman, A. M., Bradford, J. B., Hubbard, R. M., & Lauenroth, W. K. (2016). A review of precipitation and temperature control on seedling emergence and establishment for ponderosa and lodgepole pine forest regeneration. Forest Ecology and Management, 361, 328–338. doi: https://doi.org/10.1016/j.foreco.2015.11.028

R Development Core Team (2010). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Rodríguez-Trejo, D. A. (2001). Ecología del fuego en el ecosistema de Pinus hartwegii Lindl. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 7(2), 145–151. Retrieved from https://chapingo.mx/revistas/revistas/articulos/doc/rchscfaVII357.pdf

Rodríguez-Trejo, D. A., & Fulé, P. Z. (2003). Fire ecology of Mexican pines and a fire management proposal. International Journal of Wildland Fire, 12(1), 23–37. Retrieved from https://www.uv.mx/personal/tcarmona/files/2010/08/Rodriguez-y-Fule-2003.pdf

Rother, M. T., Veblen, T. T., & Furman, L. G. (2015). A field experiment informs expected patterns of conifer regeneration after disturbance under changing climate conditions. Canadian Journal of Forest Research, 45(11), 1607–1616. doi: https://doi.org/10.1139/cjfr-2015-0033

Savage, M., Mast, J. N., & Feddema, J. J. (2013). Double whammy: high-severity fire and drought in ponderosa pine forests of the Southwest. Canadian Journal of Forest Research, 43(6), 570–583. doi: https://doi.org/10.1139/cjfr-2012-0404

Vacchiano, G., Stanchi, S., Marinari, G., Ascoli, D., Zanini, E., & Motta, R. (2014). Fire severity, residuals and soil legacies affect regeneration of Scots pine in the Southern Alps. Science of the Total Environment, 472, 778–788. doi: https://doi.org/10.1016/j.scitotenv.2013.11.101

Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., …McDowell, N. G. (2013). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3(3), 292–297. doi: https://doi.org/10.1038/nclimate1693

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2018 Revista Chapingo Serie Ciencias Forestales y del Ambiente