Revista Chapingo Serie Ciencias Forestales y del Ambiente
Growth of Leucaena leucocephala (Lam.) de Wit biofertilized with arbuscular mycorrhizal fungi in the nursery
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Arbuscular mycorrhizae
biofertilization
phosphorus
Rhizophagus intraradices

How to Cite

Aguirre-Medina, J. F., Gálvez-López, A. L., & Ibarra-Puón, J. C. (2017). Growth of Leucaena leucocephala (Lam.) de Wit biofertilized with arbuscular mycorrhizal fungi in the nursery. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 24(1), 49–58. https://doi.org/10.5154/r.rchscfa.2017.07.043

##article.highlights##

  • Four collections of arbuscular mycorrhizal fungi (AMF) were evaluated in Leucaena leucocephala.
  • Rhizophagus intraradices was evaluated as a reference AMF.
  • AMF improved plant characteristics compared to the control and fertilization.
  • R. intraradices promoted higher P content and growth in the aerial part, and lower root growth.
  • “Caracoles” and “Rosario Izapa” collections developed better plant attributes than “Té limón” and “San Rafael”.

Abstract

IntroductionLeucaena leucocephala (Lam.) de Wit is native to tropical America. The root system of the species is associated with microorganisms that improve nutrition and growth.
Objective: To evaluate the effect of arbuscular mycorrhizal fungi (AMF) collections on the phosphorus (P) content and growth of L. leucocephala in the nursery.
Materials and methods: The seeds were sown and six treatments were applied: Rhizophagus intraradices (Schenck & Sm.) Walker & Schüßler (1), the collections “Caracoles” (2), “Rosario Izapa” (3), “Té limón” (4) and “San Rafael” (5), fertilization 15N-15P-15K (6) and a control. Morphological and physiological variables, root colonization and P content were recorded at 120 days. Data were subjected to an analysis of variance and Tukey’s range test (≤ 0.05).
Results and discussion: AMF improved plant characteristics in comparison with the control and fertilization. Rhizophagus intraradices caused the highest growth values in the aerial part, mycorrhizal colonization and P content, and the lowest growth in the root system. The “Caracoles” and “Rosario Izapa” isolates promoted height, root biomass and P content higher than “Té limón” and “San Rafael”.
Conclusion: AMF allow decreasing chemical fertilization without detriment to the growth of L. leucocephala.

https://doi.org/10.5154/r.rchscfa.2017.07.043
PDF
ePUB

References

Aguirre-Medina, J. F. (2006). Biofertilizantes microbianos: Experiencias agronómicas del programa nacional del INIFAP en México. México: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias - Centro de Investigaciones Regionales Pacífico Sur - Campo Experimental Rosario Izapa. Retrieved from http://biblioteca.inifap.gob.mx:8080/jspui/handle/123456789/3633

Aguirre-Medina, J. F., Aguirre-Cadena, J. F., Cadena-Iñiguez, J., & Avendaño-Arrazate, C. H. (2012). Biofertilización en plantas de la selva húmeda tropical (1.a ed.). México: Colegio de Postgraduados.

Aguirre-Medina, J. F., Kohashi-Shibata, J., Trejo-López, C., Acosta Gallegos, J. A., & Cadena-Iñiguez J. (2005). Inoculación de Phaseolus vulgaris L. con tres microorganismos y su efecto en tolerancia a sequía. Agricultura Técnica en México, 31, 125–137. Retrieved from http://www.redalyc.org/toc.oa?id=608&numero=10078

Aguirre-Medina, J. F., Mendoza-López, A., Cadena-Iñiguez, J., & Avendaño-Arrazate, C. H. (2007). La biofertilización del cacao (Theobroma cacao L.) en vivero con Azospirillum brasilense Tarrand, Krieg et Döbereiner y Glomus intraradices Schenk et Smith. Interciencia, 32(8), 1–6. Retrieved from http://www.redalyc.org/articulo.oa?id=33932808

Aguirre-Medina, J. F., Mina-Briones, F., Cadena-Iñiguez, O. J., Dardón-Zunun, J. D., & Hernández-Sedas, D. A. (2014). Crecimiento de Cedrela odorata L. biofertilizada con Rhizophagus intraradices y Azospirillum brasilense en vivero. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 20(3), 177–186. doi: https://doi.org/10.5154/r.rchscfa.2014.01.001

Aguirre-Medina, J. F., Moroyoqui-Ovilla, D. M., Mendoza-López, A., Cadena-Iñiguez, J., Avendaño-Arrazate, C. H., & Aguirre-Cadena, J. F. (2011). Aplicación de A. brasilense y G. intraradices a Coffea arabica en vivero. Agronomía Mesoamericana, 22(1), 1–10. Retrieved from http://www.mag.go.cr/rev_meso/v22n01_071.pdf

Azcón, G. C., & Barea, J. M. (1980). Micorrizas. Investigación y Ciencia, 47, 8–16.

Daniell, T., Husband, J. R., Fitter, A. H., & Young, J. P. W. (2001). Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiology Ecology 36(2-3), 203–209. doi: https://doi.org/10.1111/j.1574-6941.2001.tb00841.x

Dickson, A., Leaf, A. L., & Hosner, J. F. (1960). Quality appraisal of white spruce and white pine seedling stock in nurseries. Forestry Chronicle, 36, 10–13. Retrieved from http://pubs.cif-ifc.org/doi/pdf/10.5558/tfc36010-1

Doubková, P., Vlasáková, E., & Sudová, R. (2013). Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil, 370, 149–161. doi: https://doi.org/10.1007/s11104-013-1610-7

García, A. E. (1973). Modificaciones al sistema de clasificación climática de Köppen para adaptarlas a las condiciones de la república mexicana (3a ed.). México. Universidad Nacional Autónoma de México.

Gerdemann, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from the soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2), 235–244. doi: https://doi.org/10.1016/S0007-1536(63)80079-0

Grether, R., Martínez-Bernal, A., Luckow, M., & Zárate, S. (2006). Fascículo 44, Mimosaceae. In A. Novelo-Retana, R. Medina-Lemos, H. Ochoterena-Booth, G. A. Salazar-Chávez, & L. O. Alvarado-Cárdenas (Eds.), Flora del Valle de Tehuacán-Cuicatlán (1.a ed., pp. 1–108). México: UNAM. Retrieved from http://www.conabio.gob.mx/malezasdemexico/mimosaceae/leucaena-leucocephala/fichas/ficha.htm

Hernández, W., & Salas, E. (2009). La inoculación con Glomus fasciculatum en el crecimiento de cuatro especies forestales en vivero y campo. Agronomía Costarricense, 33(1), 17–30. Retrieved from http://www.latindex.ucr.ac.cr/agrocostar-33-1/agrocostar-33-1-02.pdf

Ibarra-Puón, J. C., Aguirre-Medina, J. F., Ley-De Coss, A., Cadena-Iñiguez, J., & Zavala-Mata, A. (2014). Inoculación de Coffea canephora (Pierre) ex Froehner con Rhizophagus intraradices (Schenck et Sm.) Walker et Schuessler y Azospirillum brasilense Tarrand, Krieg et Döbereiner en vivero. Revista Chapingo Serie Horticultura, 20(2), 201-213. doi: https://doi.org/10.5154/r.rchsh.2013.09.027

Instituto Nacional de Estadística, Geografía e Informática (INEGI). (2005). Marco geoestadístico municipal, versión 3.1. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Retrieved from http://www3.inegi.org.mx/sistemas/mexicocifras/datos-geograficos/21/21158.pdf

Jäderlund, L., Arthurson, V., Granhall, U., & Jansson, J. K. (2008). Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations. FEMS Microbiol Letters, 287(2),174–180. doi: https://doi.org/10.1111/j.1574-6968.2008.01318.x

Jaizme-Vega, M. C. (2009). Las micorrizas. Una simbiosis de interés para la agricultura. Revista Vida Rural, 288, 40–52. Retrieved from http://www.mapama.gob.es/ministerio/pags/Biblioteca/Revistas/pdf_Vrural%2FVrural_2009_288_48_52.pdf

Jaizme-Vega, M. C., & Rodríguez-Romero, A. S. (2008). Integración de microorganismos benéficos (Hongos micorrícicos y bacterias rizosféricas) en agrosistemas de las Islas Canarias. Agroecología, 3, 33–39. Retrieved from http://revistas.um.es/agroecologia/article/view/95491/91801

Kanno, T., Saito, M., Ando, Y., Macedo, M. C. M., Nakamura, T., & Miranda, C. H. B. (2006). Importance of indigenous arbuscular mycorrhiza for growth and phosphorus uptake in tropical forage grasses growing on an acid, infertile soil from the Brazilian savannas. Tropical Grasslands, 40, 94–101. Retrieved from http://www.tropicalgrasslands.info/public/journals/4/Historic/Tropical%20Grasslands%20Journal%20archive/PDFs/Vol_40_2006/Vol_40_02_20

Leigh, J., Hodge, A., & Fitter, A. H. (2009). Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist, 181, 199–207. doi: https://doi.org/10.1111/j.1469-8137.2008.02630.x

Moora, M., Öpik, M., Sen, R., & Zobel, M. (2004). Native arbuscular mycorrhizal fungal communities differentially influence the seedling performance of rare and common Pulsatilla species. Functional Ecology, 18(4), 554–562. doi: https://doi.org/10.1111/j.0269-8463.2004.00876.x

Offre, P., Pivato, B., Siblot, S., Gamalero, E., Corberand, T., Lemanceau, P., & Mougel, C. (2007). Identification of bacterial groups preferentially associated with mycorrhizal roots of Medicago truncatula. Applied and Environmental Microbiology, 73, 913–921. doi: https://doi.org/10.1128/AEM.02042-06

Phillips, J. M., & Hayman, D. J. (1970). Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158–161. doi: https://doi.org/10.1016/S0007-1536(70)80110-3

Sanon, A., Andrianjaka, Z. N., Prin Y., Bally R., Thioulouse J., Comte, G., & Duponnois, R. (2009). Rhizosphere microbiota interfere with plant-plant interactions. Plant Soil, 321, 259–278. doi: https://doi.org/10.1007/s11104-009-0010-5

Serralde, O. A. M., & Ramírez, G. M. M. (2004). Análisis de poblaciones de micorrizas en maíz Zea mays cultivado en suelos ácidos bajo diferentes tratamientos agronómicos. Revista Corpoica, 5(1), 31–40. Retrieved from http://corpomail.corpoica.org.co/BACFILES/BACDIGITAL/48629/48629.pdf

Smith, S., Anderson, I., & Smith, F. (2015). Mycorrhizal associations and phosphorus acquisition: From cells to ecosystems. In W. C. Plaxton, & H. Lambers (Eds.), Annual plant reviews volume 48: Phosphorus metabolism in plants (pp. 409–440). USA: John Wiley & Sons. doi: https://doi.org/ 10.1002/9781118958841.ch14

Statistical Analysis System (SAS). (1999-2000). SAS/STAT user´s Guide: version 8.1. Cary NC, USA: Author.

Tewari, S. K., Katiyar, R. S., Ram, B., & Misra, P. N. (2004). Effect of age and season of harvesting on the growth, coppicing characteristics and biomass productivity of Leucaena leucocephala and Vitex negundo. Biomass and Bioenergy, 26, 229–234. doi: https://doi.org/10.1016/S0961-9534(03)00118-1

Wencomo, H. B., & Lugo, J. (2013). Rendimiento de materia seca y otros componentes en Leucaena leucocephala cv. Cunningham con el uso del Liplant. Pastos y Forrajes, 36(1), 43–49. Retrieved from http://www.redalyc.org/articulo.oa?id=269127587004

Yeung, P. K. K., Wong, F. T. W., & Wong, J. T. Y. (2002). Mimosine the allelochemical from the leguminous tree L. leucocephala, selectively enhances cell proliferation in dinoflagellates. Applied and Environmental Microbiology, 68, 5160– 5163. doi: https://doi.org/10.1128/AEM.68.10.5160-5163.2002

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2018 Revista Chapingo Serie Ciencias Forestales y del Ambiente