Revista Chapingo Serie Ciencias Forestales y del Ambiente
SiBiFor: Forest Biometric System for forest management in Mexico
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

System of additive equations
volumetric system
compatible equations
forest inventory
RFMU

How to Cite

Vargas-Larreta, B., Corral-Rivas, J. J. ., Aguirre-Calderón, O. A., López-Martínez, J. O. ., De los Santos-Posadas, H. M., Zamudio-Sánchez, F. J. ., … Aguirre-Calderón, C. G. . (2017). SiBiFor: Forest Biometric System for forest management in Mexico. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 23(3), 437–455. https://doi.org/10.5154/r.rchscfa.2017.06.040

##article.highlights##

  • National biometric system for temperate and tropical Mexican forests.
  • Development of more than 6 000 new volume, taper, site index and diameter growth equations.
  • Robust methodology applicable at national level.
  • Equations available to improve estimates of national forest inventories.
  • Free-access web platform for use of the developed equations.

Abstract

Introduction: Forest biometric systems are the most widely used analytical tools for analysis of forest growth and yield.
Objective: To present a new biometric system for temperate and tropical Mexican forests.
Materials and methods: The study area included the states of Chihuahua, Guerrero, Jalisco, Oaxaca, Michoacán, Puebla, State of Mexico, Hidalgo, Tlaxcala, Veracruz and Quintana Roo. Field data collection was done by using destructive and non-destructive sampling in each Regional Forest Management Unit (RFMU) in the states. The methodology generated equation systems for the estimation of individual-tree attributes that are additive between components, scalable at total-tree level and consistent throughout the country’s different forest conditions.   
Results and discussion: The Forest Biometric System (SiBiFor for its initials in Spanish) consists of more than 6 000 new equations for 97 tree species in temperate and tropical forests. SiBiFor contains 2 917 volume, 2 868 volume-taper, 341 site index and 288 diameter growth equations.
Conclusion: The developed equations will improve the management of the country's forest ecosystems, which will contribute to their sustainability.

https://doi.org/10.5154/r.rchscfa.2017.06.040
PDF
ePUB

References

Aguilar, R.M., & Velarde, R. J. (2001). Tablas de volúmenes para la estimación del volumen forestal. Retrieved from http://www.academia.edu/10818222/Tablas_de_vol%C3%BAmenes_para_la_estimaci%C3%B3n_del_volumen_forestal

Assmann, E. (1970). The principles of forest yield studies: Studies in the organic production, structure, increment and yield of forest stands. New York, USA: Pergamon Press.

Bertalanffy, L. V. (1949). Problems of organic growth. Nature, 163(4135), 156–158. doi: https://doi.org/10.1038/163156a0

Bertalanffy, L. V. (1957). Quantitative laws in metabolism and growth. The Quarterly Review of Biology, 32(3), 217–231. doi: https://doi.org/10.1086/401873

Bi, H. (2000). Trigonometric variable-form taper equations for Australian eucalypts. Forest Science, 46(3), 397-409. Retrieved from http://www.ingentaconnect.com/content/saf/fs/2000/00000046/00000003/art00009

Biging, G. S. (1984). Taper equations for second-growth mixed conifers of Northern California. Forest Science, 30(4), 1103–1117. Retrieved from http://www.ingentaconnect.com/content/saf/fs/1984/00000030/00000004/art00032

Cieszewski, C. J., & Bailey, R. L. (2000). Generalized algebraic difference approach: Theory based derivation of dynamic site equations with polymorphism and variable asymptotes. Forest Science, 46, 116–126. Retrieved from http://www.ingentaconnect.com/content/saf/fs/2000/00000046/00000001/art00015

Cieszewski, C. J., & Strub, M. (2008). Parameter estimation of base age invariant site index models: Which data structure to use? A discussion. Forest Science, 53(5), 552–555. Retrieved from http://www.ingentaconnect.com/content/saf/fs/2007/00000053/00000005/art00002

Corral, R. S., Návar, J. J., & Fernández, S. F. (1999). Ajuste de funciones de ahusamiento a los perfiles fustales de cinco pináceas de la región de El Salto, Durango. Madera y Bosques, 5, 53–65. Retrieved from http://www.redalyc.org/articulo.oa?id=61750205

Corral-Rivas, J. J., Barrio-Anta, M., Aguirre-Calderón, O. A., & Diéguez-Aranda, U. (2007). Use of stump diameter to estimate diameter at breast height and tree volume for major pine species in El Salto Durango (Mexico). Forestry, 80, 29–40. doi: https://doi.org/10.1093/forestry/cpl048

Cruz-Cobos, F., De los Santos-Posadas, H. M., & Valdez-Lazalde, J. R. (2008). Sistema compatible de ahusamiento-volumen para Pinus cooperi Blanco en Durango, México, Agrociencia, 4, 473–485. Retrieved from http://www.redalyc.org/articulo.oa?id=30211241010

Davis, L. S., Johnson, K. N., Bettinger, P. S., & Howard, T. E. (2001). Forest management (4th ed.). New York, USA: McGraw-Hill Press.

Fang, Z., Borders, B. E., & Bailey, R. L. (2000). Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. Forest Science, 46, 1–12. Retrieved from http://www.ingentaconnect.com/contentone/saf/fs/2000/00000046/00000001/art00002

Hernández-Pérez, D., De los Santos-Posadas, H. M., Ángeles-Pérez, G., Valdez-Lazalde, J. R., & Volke-Haller, V. (2013). Sistema compatible de ahusamiento y volumen para Pinus patula Schdlt. et Cham. en Zacualtipán, Hidalgo. Revista Mexicana de Ciencias Forestales, 4(16), 34–45. Retrieved from http://www.scielo.org.mx/pdf/remcf/v4n16/v4n16a4.pdf

Lundqvist, B. (1957). On height growth in cultivated stands of pine and spruce in Northern Sweden. Meddelanden Fran Statens Skogsforskningsinstitut, 47(2), 1–64.

Muñoz-Flores, H. J., Velarde, R. J. C., García, M. J. J., Sáenz, R. J. T., Olvera, D. E. H., & Hernández, R. J. (2012). Predicción de volúmenes de fuste total para plantaciones de Pinus greggii Engelm. Revista Mexicana de Ciencias Forestales, 3(14), 10–22. Retrieved from http://cienciasforestales.inifap.gob.mx/editorial/index.php/Forestales/article/view/2504

Pompa-García, M., Corral-Rivas, J. J., Hernández-Díaz, J. C., & Álvarez-González, J. G. (2009). A system for calculating the merchantable volume of oak trees in the northwest of the state of Chihuahua, Mexico. Journal of Forest Research, 20(4), 293–300. doi: https://doi.org/10.1007/s 11676-009-0051-x

Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290–300. doi: https://doi.org/10.1093/jxb/10.2.290

Statistical Analysis System (SAS) Institute. (2008). SAS/STAT® 9.2 User’s guide second edition. SAS Institute Inc. USA: Author.

Schumacher, F. X. & Hall, F.S. (1933). Logarithmic expression of timber-tree volume. Journal of Agricultural Research, 47, 719–734. Retrieved from https://naldc.nal.usda.gov/naldc/catalog.xhtml?id=IND43968352

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2015). Anuario estadístico de la producción forestal 2014. México: Autor.

Spurr, S. H. (1952). Forest inventory. New York, USA: John Wiley & Sons Press.

Vargas-Larreta, B. (2006). Analyse und prognose des einzelbaumwachstums in strukturreichen mischbeständen in Durango, Mexiko. Göttingen, Germany: Sierke Verlag.

Vargas-Larreta, B., Cruz-Cobos, F., & Corral-Rivas, J. J. (2008). Modelos de evaluación de la información estadística de los programas de manejo forestal del estado de Durango. Informe técnico núm. 1 México: SEMARNAT.

Weiskittel, A. R., Hann, D. W., Kershaw, J. A., & Vanclay, J. K. (2011). Forest growth & yield modeling. West Sussex, UK: Wiley-Blackwell Press.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2017 Revista Chapingo Serie Ciencias Forestales y del Ambiente