Revista Chapingo Serie Ciencias Forestales y del Ambiente
Diameter-height relationships in three species grown together in a commercial forest plantation in eastern tropical Mexico
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Non-linear models
Cinnamomum sp.
Pinus chiapensis
Melia azedarach
tropics

How to Cite

Castillo-Gallegos, E., Jarillo-Rodríguez, J., & Escobar-Hernández, R. (2017). Diameter-height relationships in three species grown together in a commercial forest plantation in eastern tropical Mexico. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 24(1), 33–48. https://doi.org/10.5154/r.rchscfa.2017.05.033

##article.highlights##

  • This is the first report of diameter-height relationships in Cinnamomum sp. and Melia azedarach.
  • The best fit models were different for the three species under study.
  • There was high dispersion of data around all three best functions.
  • Future research should consider the use of best-fit functions to construct site indexes.

Abstract

Introduction: Chest-height trunk diameter and height are the main variables measured in forestry inventories, as they aid in the decision-making process in forest plantation management and in research on growth modeling, among other uses.
Objective: The aim was to find the mathematical function that best relates diameter at chest height (CHD, ≈1.3 m) to height (Ht) in three forest species grown within the same area: wild avocado (Cinnamomum sp.), Chiapas white pine (Pinus chiapensis [Martínez] Andresen) and piocho (Melia azedarach L.). 
Materials and methods: Twenty-two non-linear models, of which thirteen had two parameters and nine had three parameters, were compared using the difference in Akaike’s information criterion corrected (AICc). 
Results and discussion: The best models were: the two-parameter hyperbola for wild avocado (Ht = (17.58*CHD)/(12.33 + CHD), R2 = 0.79, SEE = 0.80, n = 647); the three-parameter Richards’ function for Chiapas white pine (Ht = 10.14*(1 – e-0.206*CHD)1.689, R2 = 0.35, SEE = 1.28,  n = 664); and the three-parameter sigmoid Korf’s function for piocho (Ht = 18.25*(e-2.46*(CHD-0.556)), R2 = 0.49, SEE = 0.96, n = 692). 
Conclusion: The best model was different for each species and the actual data around the predicted curve were highly scattered, particularly in Chiapas white pine.

https://doi.org/10.5154/r.rchscfa.2017.05.033
PDF
ePUB

References

Barrett, T. M. (2006). Optimizing efficiency of height modeling for extensive forest inventories. Canadian Journal of Forest Research, 36(9), 2259–2269. doi: https://doi.org/10.1139/x06-128

Birch, C. P. D. (1999). A new generalized logistic sigmoid growth equation compared with the Richards’ growth equation. Annals of Botany, 83, 713–723. doi: https://doi.org/10.1006/anbo.1999.0877

Brewer, J. A., Burns, P. Y., & Cao, Q. V. (1985). Short-term projection accuracy of five asymptotic height-age curves for loblolly pine. Forest Science, 31, 414–418.

Costas, R., & Rodríguez, G. (2003). Relaciones hipsométricas promedios para Pinus elliotti Engl. en Misiones y Nordeste de Corrientes. Revista Yviraretá, 12, 19–25.

Costa, E. A., Schroder, T., & Finger, C. A. G. (2016). Height-diameter relationships for Araucaria angustifolia (Bertol.) Kuntze in southern Brazil. CERNE, 22(4), 493–500. doi: https://doi.org/10.1590/01047760201622042182

Domínguez, A. F. A. (1996). Pinus chiapensis (Martínez) Andresen: Nuevo registro para Oaxaca, México. Revista Ciencia Forestal en México, 21(80), 131–137. Retrieved from http://www.inifap.gob.mx/SitePages/revistas/rmcf_numeros.aspx

Dunnett, C. W. (1964). New tables for multiple comparisons with a control. Biometrics, 20(3), 482–491. doi: https://doi.org/10.2307/2528490

Fierros-Mateo, R., De los Santos-Posadas, H. M., Fierros-González, M. A., & Cruz-Cobos, F. (2017). Crecimiento y rendimiento maderable en plantaciones de Pinus chiapensis (Martínez) Andresen. Agrociencia, 51(2), 201–214. Retrieved from http://www.redalyc.org/articulo.oa?id=30250026006

Gaillard, B. C., Pece, M., Juárez, G. M., & Ríos, N. (2002). Estimación del crecimiento y producción de una plantación de paraíso gigante (Melia azedarach var. gigantea) sin riego en la Provincia de Santiago del Estero, Argentina. Revista Quebracho, 9, 127–140. Retrieved from http://www.redalyc.org/articulo.oa?id=48100912

García, E. (1981). Modificaciones al sistema de clasificación climática de Köppen (3a ed.). México, D. F.: Instituto de Geografía, UNAM.

Google Earth©. (2011). “La Gotera”. 19° 56’ 39.99” N and 97° 15’ 42.25” W. Google Earth. September 8, 2011. Retrieved December 27, 2014 from http://www.google.com/earth/explore/products/desktop.html

GraphPad Software (2015). GraphPad Prism version 6.07 for Windows. La Jolla, California, USA: Author. Retrieved from www.graphpad.com

Huang, S., Titus, S. J., & Wiens, D. (1992). Comparison of non-linear height-diameter functions for major Alberta tree species. Canadian Journal of Forestry Research, 22, 1297–1304. doi: https://doi.org/10.1139/x92-172

Huxley, J. S. (1924). Constant differential growth ratios and their significance. Nature, 114, 895–896. doi: https://doi.org/10.1038/114895a0

Instituto Nacional de Estadística, Geografía e Informática (INEGI). (2009). Prontuario de Información Geográfica Municipal de los Estados Unidos Mexicanos: Tlapacoyan, Veracruz de Ignacio de la Llave. Clave geoestadística 30183. Retrieved from http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/30/30183.pdf

Jarillo-Rodríguez, J., Castillo-Gallegos, E., Degollado-Hoyos, O., Flores-de la Rosa, F. R., Valles-de la Mora, B., & Escobar-Hernández, R. (2013). Emergencia de semilla de piocho (Melia azedarach L.) sometida a diferentes tiempos de escarificación con H2SO4. Avances en Investigación Agropecuaria, 17, 83–88. Retrieved from http://www.ucol.mx/revaia/portal/pdf/2013/sept/6.pdf

Joanes, D. N., & Gill, C. A. (1998). Comparing measures of sample skewness and kurtosis. Journal of the Royal Statistical Society: Series D (The Statistician), 47(1), 183–189. doi: https://doi.org/10.1111/1467-9884.00122

Juárez, G. M., Pece, M. G., Gaillard, B. C., Sanguedolce, J., Mariot, V., & Mazzuco, R. (2006). Ecuaciones altura-diámetro para Ziziphus mistol, Griseb. Revista Quebracho, 13, 36–43. Retrieved from http://www.redalyc.org/articulo.oa?id=48101304

Kidwell, J. F., Gregory, P. W., & Guilbert, H. R. (1952). A genetic investigation of allometric growth in Hereford cattle. Genetics, 37(2), 158–174. Retrieved from http://www.genetics.org/content/genetics/37/2/158.full.pdf

Korf, V. (1939). Contribution to mathematical definition of the law of stand volume growth. Lesnická práce, 18, 339–379.

Landsberg, J. J. (1977). Some useful equations for biological studies. Experimental Agriculture, 13, 273–280. doi: https://doi.org/10.1017/S0014479700008000

Lappi, J. A. (1997). Longitudinal analysis of height/diameter curves. Forestry Science, 43, 555–570. Retrieved from http://www.ingentaconnect.com/content/saf/fs/1997/00000043/00000004/art00013

López, S. C., Gorgoso, V. J., Castedo, D. F., Rojo, A. A., Rodríguez, S. R., Álvarez, G. J. G., & Sánchez, R. F. (2003). A height-diameter model for Pinus radiata D. Don in Galicia (Northwest Spain). Annals of Forest Science, 60(3), 237–245. doi: https://doi.org/10.1051/forest:2003015

Lorea-Hernández, F. G. (1997). On Cinnamomum (Laureacea) in México. Acta Botánica Mexicana, 40, 1–18. Retrieved from http://www.redalyc.org/articulo.oa?id=57404001

Marquardt, D. W. (1963). An algorithm for least squares estimation of parameters. Journal of the Society of Industrial Applied Mathematics, 11, 431–441. Retrieved from http://www.dista.unibo.it/~bittelli/materiale_lettura_fisica_terreno/marquardt_63.pdf

Moore, J. A., Zhang, L., & Stuck, D. (1996). Height-diameter equations for ten tree species in the Inland Northwest. Western Journal of Applied Forestry, 11, 132–137. Retrieved from http://www.ingentaconnect.com/content/saf/wjaf/1996/00000011/00000004/art00007

Motulsky, H., & Christopolous, A. (2003). GraphPad Prism® Version 4.0. Fitting models to biological data using linear and nonlinear regression: A practical guide to curve fitting. San Diego, CA, USA: GraphPad Software. Retrieved from http://s3.amazonaws.com/cdn.graphpad.com/faq/1757/file/Prism4RegressionBook.pdf

Motulsky, H. M., & Brown, R. E. (2006). Detecting outliers when fitting data with nonlinear regression – a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics, 7, 123. doi: https://doi.org/10.1186/1471-2105-7-123

Osman, E. M. H., Idris, E. Z. A., & Ibrahim, E. M. M. (2013). Modelling height-diameter relationships of selected economically important natural forest species. Journal of Forest Products and Industries, 2, 34–42. Retrieved from http://researchpub.org/journal/jfpi/number/vol2-no1/vol2-no1-5.pdf

Patil, S. J., Mutanal, S. M., & Patil, H. Y. (2012). Melia azedarach based agroforestry system in transitional tract of Karnataka. Karnataka Journal Agricultural Science, 25(4), 460–462. Retrieved from http://inflibnet.ac.in/ojs/index.php/KJAS/article/viewFile/1592/1411

Pece, M. G., Benítez, C., Juárez, M., Mariot, V., Sanguedolce, J., & Pranzoni, O. (2006). Modelación de la altura total para quebracho colorado santiagueño (Schinopsis quebracho-colorado). Foresta Veracruzana, 8, 1–7. Retrieved from http://www.redalyc.org/articulo.oa?id=49780101

Prodan, M., Peters, R., Cox, F., & Real, P. (1997). Mensura forestal. San José, Costa Rica: Proyecto IICA/GTZ sobre Agricultura, Recursos Naturales y Desarrollo Sostenible GmbH.

Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290–300. doi: https://doi.org/10.1093/jxb/10.2.290

Rodríguez-Acosta, M., & Arteaga-Martínez, B. (2005). Índice de sitio para Pinus chiapensis (Martínez) Andresen, en los estados de Veracruz y Puebla, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 11(1), 39–44. Retrieved from https://chapingo.mx/revistas/revistas/articulos/doc/rchscfaXI428.pdf

Sánchez, V. N. M., & del Castillo, S. R. F. (2001). Calidad de estación para Pinus chiapensis (Mart.) Andresen en el Rincón, Oaxaca, México. Foresta Veracruzana, 3, 9–12. Retrieved from http://www.redalyc.org/articulo.oa?id=49703202

Santiago-Hernández, F., López-Ortiz, S., Ávila-Reséndiz, C. A., Jarillo-Rodríguez, J., Pérez-Hernández, P., & Guerrero-Rodríguez, J. D. (2015). Physiological and production responses of four grasses from the genera Urochloa and Megathyrsus to shade from Melia azedarach L. Agroforestry systems, 90(2), 339–349. doi: https://doi.org/10.1007/s10457-015-9858-y

Statistical Analysis System (SAS Institute Inc.). 2013. SAS/STAT® 12.3 User’s Guide. Cary, NC, USA: Author.

Schröeder, J., & Álvarez-González, J. G. (2001). Comparing the performance of generalized diameter-height equations for maritime pine in northwestern Spain. Forstwissenschafttliches Centralbatt, 120, 18–23. doi: https://doi.org/10.1007/BF02796077

Sharma, R. P. (2009). Modelling height-diameter relationship for Chir pine trees. Banko Janakari, 19, 3–9. doi: https://doi.org/10.3126/banko.v19i2.2978

Sistema de Información para la Reforestación (SIRE), Comisión Nacional Forestal (CONAFOR), & Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). (2015) Ficha técnica 956. Pinus chiapensis (Martínez) Andresen. Retrieved November 25, 2015 from http://www.conafor.gob.mx:8080/documentos/docs/13/956Pinus%20chiapensis.pdf

Sistema de Información para la Reforestación (SIRE), Comisión Nacional Forestal (CONAFOR), & Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). (2015a). Ficha técnica 944. Melia azedarach L. Retrieved November 25, 2015 from http://www.conafor.gob.mx:8080/documentos/docs/13/944Melia%20azedarach.pdf

Silvert, W. (1979). Practical curve fitting. Limnology and Oceanography, 24(4), 767–773. Retrieved from http://onlinelibrary.wiley.com/doi/10.4319/lo.1979.24.4.0767/pdf

Stage, A. R. (1963). A mathematical approach to polymorphic site index curves for grand fir. Forest Science, 9, 167–180. Retrieved from http://www.ingentaconnect.com/content/saf/fs/1963/00000009/00000002/art00007#expand/collapse

Trincado, G., & Leal, D. C. (2006). Ecuaciones locales y generalizadas de altura-diámetro para pino radiata (Pinus radiata). Bosque (Valdivia), 27(1), 23–34. doi: https://doi.org/10.4067/S0717-92002006000100003

Zeide, B. (1989). Accuracy of equations describing diameter growth. Canadian Journal of Forest Research, 19, 1283–1286. doi: https://doi.org/10.1139/x89-195

Zeide, B. (1993). Analysis of growth equations. Forest Science, 39, 594–616. Retrieved from http://www.ingentaconnect.com/content/saf/fs/1993/00000039/00000003/art00014

Zhao, W., Mason, E. G., & Brown, J. (2006). Modelling height-diameter relationships of Pinus radiata plantations in Canterbury, New Zealand. New Zealand Journal of Forestry, 51, 23–27. Retrieved from http://www.nzjf.org/free_issues/NZJF51_1_2006/EAEA779C-FB75-4901-9119-83C52AB7321A.pdf

Vibrans, A. C., Moser, P., Oliveira, L. Z., & Macaneiro, J. P. (2015). Height-diameter models for three subtropical forest types in southern Brazil. Ciência e agrotecnologia, 39(3), 205–215. doi: https://doi.org/10.1590/S1413-70542015000300001

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2018 Revista Chapingo Serie Ciencias Forestales y del Ambiente