Revista Chapingo Serie Ciencias Forestales y del Ambiente
Aspergillus niger Tiegh., isolated in Sonora, Mexico: metal tolerance evaluation
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Filamentous fungus
lead
zinc
chromium
metal toxicity
mining activity

How to Cite

Villalba-Villalba, A. G. ., Cruz-Campas, M. E., & Azuara-Gómez, G. V. . (2018). Aspergillus niger Tiegh., isolated in Sonora, Mexico: metal tolerance evaluation. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 24(2), 131–146. https://doi.org/10.5154/r.rchscfa.2017.03.023

##article.highlights##

  • The tolerance of Aspergillus niger to Ag, Cd, Cr, Cu, Hg, Pb and Zn metal salts was determined.
  • The fungus showed high tolerance indices (> 0.80) at 1 mM concentrations of each metal salt.
  • The minimum inhibitory concentration (MIC) is in the range of 5 to 10 mM of the Hg, Cu and Ag salts, and 15 to 20 mM of the Cd salt.
  • The growth of the fungus was not inhibited at 20 mM of the Pb, Zn and Cr salts; therefore, the MIC is even higher.
  • Aspergillus niger has potential for bioremediation of the metals evaluated.

Abstract

Introduction: Metal contamination represents a significant risk to ecosystems; it is therefore necessary to reduce the bioavailability, mobility and toxicity of these elements.
Objective: To isolate a filamentous fungus with the ability to tolerate metals.
Materials and methods: The fungus was isolated from soil with mining activity. The tolerance index and the minimum inhibitory concentration (MIC) of the fungus were determined at 1, 5, 10, 15 and 20 mM of the Cd, Hg, Pb, Ag, Cu, Zn and Cr metal salts.
Results and discussion: The isolated fungus was Aspergillus niger. It had average tolerance indices of 0.89, 1.03, 1.05, 0.94, 0.88, 0.87 and 1.27 at 1 mM of the Cd, Hg, Pb, Ag, Cu, Zn and Cr salts, respectively, after seven days of growth at 28 °C. The MIC of A. niger was found in a range of 5 to 10 mM of the Hg, Cu and Ag salts, and 15 to 20 mM of the Cd salt. The Pb, Zn and Cr salts did not inhibit the growth of the fungus with the highest concentration evaluated; that is, the MIC is greater than 20 mM.
Conclusión: Aspergillus niger has potential for the bioremediation of contaminants since it showed high tolerance to the metal salts.

https://doi.org/10.5154/r.rchscfa.2017.03.023
PDF
ePUB

References

Abarca, M. L. (2000). Taxonomía e identificación de especies implicadas en la aspergilosis nosocomial. Revista Iberoamericana de Micología, 17, S79–S84. Retrieved from http://www.fba.org.ar/panel-gestion/InformeResultado/MI/mi33.pdf

Anand, P., Isar, J., Saran, S., & Saxena, R. K. (2006). Bioaccumulation of copper by Trichoderma viride. Bioresource Technology, 97, 1018–1025. doi: https://doi.org/10.1016/j.biortech.2005.04.046

Ashraf, R., & Ali, T. A. (2007). Effect of heavy metals on soil microbial community and Mung beans seed germination. Pakistan Journal of Botany, 39(2), 629–636. Retrieved from http://www.pakbs.org/pjbot/PDFs/39(2)/PJB39(2)629.pdf

Balsalobre, L., De Siloniz, M. I., Valderrama, M. J., Benito, T., Larrea, M. T., & Peinado, J. M. (2003). Occurrence of yeasts in municipal wastes and their behavior in presence of cadmium copper and zinc. Journal of Basic Microbiology, 43, 185–193. doi: https://doi.org/10.1002/jobm.200390021

Bennet, J. W., Wunch, K. G., & Faison, B. D. (2002). Manual of environmental microbiology: Use of fungi biodegradation. Washington D.C., USA: ASM Press.

Castro-Silva, M. A., De Souza, L. A. O., Gerchenski, A. V., Jaques, D. B., Rodriques, A. L., De Souza, P. L., & Rorig, L. R. (2003). Heavy metal resistance of microorganisms isolated from coal mining environments of Santa Catarina. Brazilian Journal of Microbiology, 34, 45–47. doi: https://doi.org/10.1590/S1517-83822003000500015

Chatterjee, S., Mukherjee, A., Sarkar, A., & Roy, P. (2012). Bioremediation of lead by-lead-resistant microorganisms, isolated from industrial sample. Advances in Bioscience and Biotechnology, 3(3), 290-295. doi: https://doi.org/10.4236/abb.2012.33041

Danesh, Y. R., Tajbakhsh, M., Goltapeh, E. M., & Varma, A. (2013). Mycoremediation of heavy metals. In E. M. Goltapeh, Y. R. Danesh, & A. Varma (Eds.), Fungi as bioremediators. Soil Biology (vol. 32, pp. 245–267). Berlin Heidelberg: Springer-Verlag. doi: https://doi.org/10.1007/978-3-642-33811-3_11

Dhawale, S. S., Lane, A. C., & Dhawale, W. (1996). Effects of mercury on the white rot fungus Phanerochaete chrysosporium. Bulletin of Environmental Contamination of Toxicology, 56(5), 825. doi: https://doi.org/10.1007/s001289900120

Dixit, R., Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., Singh, B. P., …Paul D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 7, 2189. doi: https://doi.org/10.3390/su7022189

Ezzouhri, L., Castro, E., Moya, M., Espinola, F., & Lairini, K. (2009). Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier Morocco. African Journal of Microbiology Research, 3(2), 035–048. Retrieved from http://www.academicjournals.org/article/article1380177143_Ezzouhri%20et%20al.pdf

Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist, 124(1), 25–60. doi: https://doi.org/10.1111/j.1469-8137.1993.tb03796.x

Iram, S., Zaman, A., Iqbal, Z., & Shabbir R. (2013). Heavy metal tolerance of fungus isolated from soil contaminated with sewage and industrial wastewater. Polis Journal of Environmental Studies, 22(3), 691–697. Retrieved from https://pdfs.semanticscholar.org/8e80/0b9756b6b298a05c31668bfd2b820361b0b3.pdf

Izkandar, N. L., Zainudin, N. A., & Tan, S. G. (2011). Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. Journal of Environmental Sciences, 23(5), 824–830. doi: https://doi.org/10.1016/S1001-0742(10)60475-5

Jabbari, N. K. A., Faezi, G. M., Khosravan, A., Farahmad, A., & Shakibaie, M. R. (2010). Cadmium bioremediation by metal resistant mutated bacteria isolated from active sludge of industrial effluent. Iranian Journal of Environmental Health Science & Engineering, 7(4), 279–286. Retrieved from http://www.bioline.org.br/pdf?se10032

Joo, J. H., & Hussein, K. A. (2012). Heavy metal tolerance of fungi isolated from contaminated soil. Korean Journal of Soil Science Fertilized, 45(4), 565–571. doi: https://doi.org/10.7745/KJSSF.2012.45.4.565

Kermasha, S., Pellerin, F., Rovel, B., Goetghebeur, M., & Metche, M. (1993). Purification and characterization of copper metallothioneins from Aspergillus niger. Bioscience, Biotechnology and Biochemistry, 57(9), 1420–1423. doi: https://doi.org/10.1271/bbb.57.1420

Krauter, R., Martinelli, K., Williams, S., & Martins, S. (1996). Removal of Cr (VI) from ground water by Saccharomyces cerevisiae. Biodegradation, 7(4), 277–286. doi: https://doi.org/10.1007/BF00115741

Kurniati, E., Arfarita, N., & Imai, T. (2014). Potential use of Aspergillus flavus strain KRP1 in utilization of mercury contaminant. Procedia Environmental Science, 20, 254–260. doi: https://doi.org/10.1016/j.proenv.2014.03.032

Levinskaite, L. (2002). Response of soil fungi to chromium (VI). Ekologija, 1, 10–13. Retrieved from http://elibrary.lt/resursai/LMA/Ekologija/E-10.pdf

Low, K. S., Lee, C. K., & Liew, S. C. (2000). Sorption of cadmium and lead from aqueous solution by spent grain. Process Biochemistry, 36, 59–64. doi: https://doi.org/10.1016/S0032-9592(00)00177-1

Massaccesi, G., Romero, M. C., Cazau, M. C., & Bucsinszky, A. M. (2002). Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina). World Journal of Microbiology and Biotechnology, 18(9), 817–820. doi: https://doi.org/10.1023/A:1021282718440

Mohammadian, E., Babai, A. A., Arzanbu, M., Oustan, S., & Khazaei, S. H. (2017). Tolerance to heavy metals in filamentous fungi isolated from contaminated mining soils in the Zanjan Providence, Iran. Chemosphere, 185, 290–296. doi: https://doi.org/10.1016/j.chemosphere.2017.07.022

Mohammadian, F. M., Soleimani N., Mehrasbi M., Darabian A., Mohammadi, J., & Ramazani, A. (2015). Highly cadmium tolerant fungi: their tolerance and removal potential. Journal of Environmental Health Science & Engineering, 13(19), 1-9. doi: https://doi.org/10.1186/s40201-015-0176-0

Nordberg, G., Fowler, B., & Nordberg, M. (2015). Toxicology of metals: overview, definitions, concepts and trends. In G. Nordberg, B. Fowler, & M. Nordberg (Eds.), Handbook on the toxicology of metals (vol. 1, pp. 1–12). San Diego, USA: Elsevier.

Roane, T. M., & Pepper, L. L. (2000). Microbial responses to environmentally toxic cadmium. Microbial Ecology, 38, 358–364. doi: https://doi.org/10.1007/s002489901001

Rhodes, Ch. (2014). Mycoremediation (bioremediation with fungi) – growing mushrooms to clean the earth. Chemical Speciation & Bioavailability, 26(3), 196–198. doi: https://doi.org/10.3184/095422914X14047407349335

Sáez, V. A., Flórez, V. L., & Cadavid, R. A. (2002). Caracterización de una cepa nativa de Aspergillus niger y evaluación de la producción de ácido cítrico. Revista Universidad EAFIT, 128, 33–41. Retrieved from http://publicaciones.eafit.edu.co/index.php/revista-universidad-eafit/article/view/845/753

Sanyal, A., Rautaray, D., Bansal, V., Ahmad, A., & Sastry, M. (2005). Heavy metal remediation by a fungus as a means of production of lead and cadmium carbonate crystals. Langmuir, 21, 7220–7224. doi: https://doi.org/10.1021/la047132g

Servicio Geológico Mexicano (SGM). (2017). Anuario estadístico de la minería mexicana 2016. Retrieved from http://www.sgm.gob.mx/productos/pdf/Anuario_2015_Edicion_2016.pdf

Singh, H. (2006). Mycoremediation. New York, USA: Ed. Wiley-Interscience.

Sintuprapa, W., Thiravetyan, P., & Tanticharoen, M. (2000). A possible mechanism of Zn2+ uptake by living cells of Penicillium sp. Biotechnology Letters, 22, 1709–1712. doi: https://doi.org/10.1023/A:1005688132205

Srivastava, S., & Thakur, I. S. (2006). Biosorption potency of Aspergillus niger for removal of chromium (VI). Current Microbiology, 53, 232–237. doi: https://doi.org/10.1007/s00284-006-0103-9

Vadkertiova, R., & Slavikova, E. (2006). Metal tolerance of yeasts isolated from water. Journal Basic of Microbiology, 46(2), 145–152. doi: https://doi.org/10.1002/jobm.200510609

Verma, T., Srinath, T., Gadpayle, R. U., Ramteke, P. W., Hans, R. K., & Garg, S. K. (2001). Chromate tolerant bacteria isolated from tannery effluent. Bioresource Technology, 78, 31–35. doi: https://doi.org/10.1016/S0960-8524(00)00168-1

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2018 Revista Chapingo Serie Ciencias Forestales y del Ambiente