Revista Chapingo Serie Ciencias Forestales y del Ambiente
Inoculation with an edible ectomycorrhizal fungus and bacteria increases growth and improves the physiological quality of Pinus montezumae Lamb.
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Mycorrhiza
photosynthetic rate
chlorophyll
Hebeloma mesophaeum
Cohnella
Azospirillum brasilense

How to Cite

Barragán-Soriano, J. L. ., Pérez-Moreno, J., Almaraz-Suárez, J. J. ., Carcaño-Montiel, M. G. ., & Medrano-Ortiz, K. I. . (2017). Inoculation with an edible ectomycorrhizal fungus and bacteria increases growth and improves the physiological quality of Pinus montezumae Lamb. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 24(1), 3–16. https://doi.org/10.5154/r.rchscfa.2017.01.010

##article.highlights##

  • Pinus montezumae plants were coinoculated with Hebeloma mesophaeum, Cohnella sp. and Azospirillum brasilense.
  • In general, inoculated plants had better growth and nutrient content.
  • Photosynthesis was four times higher in inoculated than uninoculated plants.
  • Ectomycorrhizal colonization ranged from 69 to 76 % in inoculated treatments.

Abstract

Introduction: Ectomycorrhiza and mycorrhiza helper bacteria are essential to the nutritional recycling of forest ecosystems. Objective: Growth, photosynthetic rate, chlorophylls, carotenes, root colonization and N, P and K contents were evaluated in Pinus montezumae plants inoculated with the edible ectomycorrhizal fungus Hebeloma mesophaeum (Hm), alone and in combination with the bacteria Cohnella sp. (C) or Azospirillum brasilense (Ab).
Results and discussion: Plants inoculated only with the fungus or coinoculated with the fungus and the bacteria showed better physiological quality than the uninoculated plants and those inoculated exclusively with the bacteria, mainly in terms of growth, photosynthesis and nutrient content. Hm inoculation, alone or in combination with the bacteria, increased the chlorophyll a, b, and total concentrations. Bacterial inoculation increased the carotene concentration, while the fungus alone had no effect. There was synergism in the plants inoculated with Hm + Ab, which was reflected in shoot and total N contents, compared to plants inoculated with Hm or Ab separately. Ectomycorrhizal colonization ranged from 69 to 76 % in inoculated treatments.
Conclusion: There is biotechnological potential for coinoculation with edible ectomycorrhizal fungi and mycorrhiza helper bacteria in P. montezumae.

https://doi.org/10.5154/r.rchscfa.2017.01.010
PDF
ePUB

References

Agerer, R. (1994). Characterization of ectomycorrhizal. In J. R. Norris, D. J. Read, & A. K. Varma (Eds.), Techniques for mycorrhizal research (pp. 25-73). London: Academic Press.

Allen, S. E., Grimshaw, H. M., Parkinson, J. A., & Quarmbym, C. (1997). Chemical analysis of ecological materials. Oxford, UK: Blackwell Scientific Publications.

Bremner, J. M. (1965). Total nitrogen. Agronomy, 9, 1149–1178.

Canton, C. C., Bertolazi, A. A., Cogo, A. J. D., Eutrópio, J. F., Melo, J., de Souza, B. S., …Ramos, C. A. (2016). Biochemical and ecophysiological responses to manganese stress by ectomycorrhizal fungus Pisolithus tinctorius and in association with Eucalyptus grandis. Mycorrhiza, 26, 475–487. doi: https://doi.org/10.1007/s00572-016-0686-3

Cetina, V. M. (2004). Deforestación y reforestación. In M. L. I. de Bauer (Ed.), Temas ambientales del siglo XXI (pp. 12–13). México: Colegio de Postgraduados.

Cumming, J. R., Zawaski, C., Desai, S., & Collart, F. R. (2015). Phosphorus disequilibrium in the tripartite plant-ectomycorrhiza-plant growth promoting rhizobacterial association. Journal of Soil Science and Plant Nutrition, 15(2), 464–485. doi: https://doi.org/10.4067/S0718-95162015005000040

Food and Agriculture Organization of the United Nations (FAO). (2010). Global forest resources assessment 2010. Rome, Italy: FAO.

Gómez-Romero, M., Lindig-Cisneros, R., & Del Val, E. (2015). Efecto de la sequía en la relación simbiótica entre Pinus pseudostrobus y Pisolithus tinctorius. Botanical Sciences, 93, 731–740. doi: https://doi.org/10.17129/botsci.193

Kataoka, R., & Futai, K. (2009). A new mycorrhizal helper bacterium, Ralstonia species, in the ectomycorrhizal symbiosis between Pinus thunbergii and Suillus granulatus. Biology and Fertility of Soils, 45, 315–320. doi: https://doi.org/10.1007/s00374-008-0340-0

Kayama, M., Qu, L., & Koike, T. (2015). Elements and ectomycorrhizal symbiosis affecting the growth of Japanese larch seedlings regenerated on slopes of an active volcano in northern Japan. Trees, 29, 1567–1579. doi: https://doi.org/10.1007/s00468-015-1238-8

Lichtenthaler, H. K. (1987). Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382. doi: https://doi.org/10.1016/0076-6879(87)48036-1

Martínez-Reyes, M., Pérez-Moreno, J., Villarreal-Ruiz, L., Ferrera-Cerrato, R., Xoconostle-Cázares, B., Vargas-Hernández, J. J., & Honrubia-García, M. (2012). Crecimiento y contenido nutrimental de Pinus greggii Engelm. inoculado con el hongo comestible ectomicorrízico Hebeloma mesophaeum (Pers.) Quél. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 18(2), 183–192. doi: https://doi.org/10.5154/r.rchscfa.2010.11.112

Méndez-Neri, M., Pérez-Moreno, J., Quintero, L. R., Hernández, A. E., & Lara, H. A. (2011). Growth and nutrimental content of Pinus greggii inoculated with three edible ectomycorrhizal fungi. Terra Latinoamericana, 29(1), 73–81.

Mrnka, L., Tokárová, H., Vosátka, M., & Matejka, P. (2009). Interaction of soil filamentous fungi affects needle composition and nutrition of Norway spruce seedlings. Trees, 23, 887–897. doi:10.1007/s00468-009-0330-3

Perea-Estrada, V. M., Pérez-Moreno, J., Villareal, R. L., Trinidad, S. A., De la I. de Bauer, M. L., Cetina-Alcalá, V. M., & Tijerina, C. L. (2009). Humedad edáfica nitrógeno y hongos ectomicorrízicos comestibles en el crecimiento de pino. Revista Fitotecnia Mexicana, 32, 93–102. Retrieved from http://www.scielo.org.mx/pdf/rfm/v32n2/v32n2a4.pdf

Pérez-Moreno, J. (2016). Los hongos silvestres y el cambio climático global y bosques. In M. L. de la Isla de Bauer (Ed.), Producción de alimentos en casa: Agricultura urbana y periurbana (pp.153–176). México: Comité de Acción para el Saneamiento Ambiental.

Pérez-Moreno, J., Lorenzana, F. A., Carrasco H. V., & Yescas-Pérez, A. (2010). Aspectos biotecnológicos de los hongos comestibles silvestres del Parque Nacional Izta-Popo, Zoquiapan y anexos. México: Colegio de Postgraduados-SEMARNAT- CONACyT.

Rinaldi, A. C., Comandini, O., & Kuyper, T. W. (2008). Ectomycorrhizal fungal diversity: Separating the wheat from the chaff. Fungal Diversity, 33, 1–45. Retrieved from https://www.researchgate.net/publication/37792709_Ectomycorrhizal_fungal_diversity_Separating_the_wheat_from_the_chaff

Sanchez-Zabala, J., Majada, J., Martín-Rodríguez, N., Gonzales-Murua, C., Ortega, U., Alonso-Graña, M., …Duñabeitia, M. K. (2013). Physiological aspects underlying the improved outplanting performance of Pinus pinaster Ait. seedlings associated with ectomycorrhizal inoculation. Mycorrhiza, 23, 627–40. doi: https://doi.org/10.1007/s00572-013-0500-4

Sebastiana, M., Tolentino, P. V., Alcántara, A., Salomé, P. M., & Bernardes, S. A. (2013). Ectomycorrhizal inoculation whith Pisolithus tinctorius increases the performance of Quercus suber L. (cork oak) nursery and field seedlings. New Forest, 44, 937–949. doi: https://doi.org/10.1007/s11056-013-9386-4

Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd. edition). New York, USA: Academic Press. doi: https://doi.org/10.1016/B978-012370526-6.50002-7

Sousa, R. N., Franco, R. A., Ramos, A. M., Oliveira, S. R., & Castro, L. M. P. (2015). The response of Betula pubescens to inoculation with an ectomycorrhizal fungus and a plant growth promoting bacterium is substrate-dependent. Ecological Engineering, 81, 439–443. doi: https://doi.org/10.1016/j.ecoleng.2015.04.024

Statistical Analysis System (SAS Institute Inc.). (2009). SAS/STAT® 9.2 User’s Guide (Second edition). Cary, NC, USA: Author.

Valdés, R. M., Ambriz, P. E., Camacho, V. A., & Fierros, G. A. M. (2010). Inoculación de plántulas de pinos con diferentes hongos e identificación visual de la ectomicorriza. Revista Mexicana de Ciencias Forestales, 2, 53–64. Retrieved from http://www.scielo.org.mx/pdf/remcf/v1n2/v1n2a5.pdf

Xiao-Qin, W., Liang-Liang, H., Jiang-Mei, S., Jia-Hong, R., Zheng, L., Chen, D., & Jian-Ren, Y. (2012). Effects of ectomycorrhizal fungus Boletus edulis and mycorrhiza helper Bacillus cereus on the growth and nutrient uptake by Pinus thunbergii. Biology and Fertility of Soils, 48, 385–391. doi: https://doi.org/10.1007/s00374-011-0638-1

Xu, H., Kemppainen, M., El Kayal, W., Lee, H. E., Pardo, G. A., Cooke, K. E. J., & Zwiazek, J. J. (2015). Overexpression of Laccaria bicolor aquaporin JQ585595 alters root water transport properties in ectomycorrhizal white spruce (Picea glauca) seedlings. New Phytologist, 205, 757–770. doi: https://doi.org/10.1111/nph.13098

Yin, D., Deng, X., Chet, I., & Song, R. (2014). Physiological responses of Pinus sylvestris var. mongolica seedlings to the interaction between Suillus luteus and Trichoderma virens. Current Microbiology, 69, 334–342. doi: https://doi.org/10.1007/s00284-014-0589-5

Zhang, Z. X. (1986). Determination of chlorophyll content of plants - acetone and ethanol mixture method. Liaoning Agricultural Science, 3, 26−28.

Zhao, L., Xiao-Qin, W., Jian-Ren, Y., Hao, L., & Gui-E, L. (2014). Isolation and characterization of a mycorrhiza helper bacterium from rhizosphere soils of poplar stands. Biology and Fertility Soils, 50, 693–601. doi: https://doi.org/10.1007/s00374-013-0880-9

Zong, K., Huang, J., Nara, K., Chen, Y., Shen, Z., & Lian, C. (2015). Inoculation of ectomycorrhizal fungi contributes to the survival of tree seedlings in a copper mine tailing. Journal of Forest Research, 20, 493–500. doi: https://doi.org/10.1007/s10310-015-0506-1

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2018 Revista Chapingo Serie Ciencias Forestales y del Ambiente