Revista Chapingo Serie Ciencias Forestales y del Ambiente
Quality and time of biosolid compost when varying ratios and weight of substrates
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Biodegradation
composite
clay
aerated piles

How to Cite

Juárez-Robles, B. ., de la Rosa-Gómez, I., Mañon-Salas, M. del C. ., Hernández-Berriel, M. del C. ., Vaca-Paulín, R., & Lugo-de la Fuente, J. (2017). Quality and time of biosolid compost when varying ratios and weight of substrates. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 23(3), 401–410. https://doi.org/10.5154/r.rchscfa.2016.12.065

##article.highlights##

  • Different ratios of biosolids (BS), clay soil (CS) and degraded manure (DM) were evaluated.
  • The substrates were evaluated in piles of 250, 500 and 2 000 kg.
  • The temperature of the compost piles increased to 45 °C at 24 h from the beginning of the process.
  • The active composting process culminated in a period of 21 to 32 days
  • The ratio 65:30:05 (BS:CS:DM) in piles of 250 kg increases the agronomic quality of the compost.

Abstract

Introduction: Biosolids generated in the treatment of wastewater are an environmental problem due to their inadequate handling and disposal.

Objective: To know the effects when varying substrate ratios and pile weight on quality and time of biosolid compost.

Materials and Methods: The mixture of biosolids (BS) with clay soil (CS) and equine degraded manure (DM) was evaluated in the following ratios: 70:30:00, 65:30:05, 60:30:10 and 50:30:20 to determine the optimum ratio in piles of 250 kg and evaluate it in 500 and 2 000 kg. The parameters of quality were temperature, Ph, humidity, organic matter (OM), total Kjeldahl nitrogen (TKN), C/N ratio, K/Na ratio and phosphorus (P).

Results and Discussion: the ratio 65:30:05 had higher temperature (63.8 °C) and lower composting time (21 days). Significant differences (P < 0.05) were found in the parameters of quality with respect to the substrates and pile weight. The treatments of 250 kg had the shortest processing time (28 days) with higher OM, TKN, C/N and P.

Conclusion: The DM and CS favor BS composting by reducing the process to a maximum of 32 days. The ratio 65:30:05 in 250 kg increases the agronomic quality of the compost.

https://doi.org/10.5154/r.rchscfa.2016.12.065
PDF
ePUB

References

Antil, R. S., Raj, D., Narwal, R. P., & Singh, J. P. (2011). Evaluation of maturity and stability parameters of composts prepared from organic wastes and their response to wheat. Waste and Biomass Valorization, 4(1), 95-104. doi: https://doi.org/10.1007/s12649-012-9141-7

Barrena, R., Font, X., Gabarrell, X., & Sánchez, A. (2014). Home composting versus industrial composting: Influence of composting system on compost quality with focus on compost stability. Waste Management, 34(7), 1109-1116. doi: https://doi.org/10.1016/j.wasman.2014.02.008

Bernal, M., Navarro, A., Roig, A., Cegarra, J., & García, J. (1996). Carbon and nitrogen transformation during composting of sweet sorghum bagasse. Biology and Fertility of Soils, 22(1), 141-148. doi: https://doi.org/10.1007/BF00384446

Bustamante, M. A., Paredes, C., Marhuenda-Egea, F. C., Pérez-Espinosa, A., Bernal, M. P., & Moral, R. (2008). Co-composting of distillery wastes with animal manures: Carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere, 72, 551-557. doi: https://doi.org/10.1016/j.chemosphere.2008.03.030

Hachicha, S., Sellami, F., Cegarra, J., Hachicha, R., Drira, N., Medhioub, K., & Ammar, E. (2009). Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure-Physico-chemical characterization of the processed organic matter. Journal of Hazardous Materials, 162(1), 402-409. doi: https://doi.org/10.1016/j.jhazmat.2008.05.053

Ho, C., Yuan, S., Jien, S., & Hseu, Z. (2010). Elucidating the process of co-composting of biosolids and spent activated clay. Bioresource Technology, 101(21), 8280-8286. doi: https://doi.org/10.1016/j.biortech.2010.06.058

Jiang, J., Liu, X., Huang, Y., & Huang, H. (2015). Inoculation with nitrogen turnover bacterial agent appropriately increasing nitrogen and promoting maturity in pig manure composting. Waste Management, 39, 78-85. doi: https://doi.org/10.1016/j. wasman.2015.02.025

Jolanun, B., & Towprayoon, S. (2010). Novel bulking agent from clay residue for food waste composting. Bioresource Technology, 101(12), 4484-4490. doi: https://doi.org/10.1016/j.biortech.2010.01.116

Ksheem, A. M., Bennett, J. M., Antille, D. L., & Raine, S. R. (2015). Towards a method for optimized extraction of soluble nutrients from fresh and composted chicken manures. Waste Management, 45, 76-90. doi: https://doi.org/10.1016/j.wasman. 2015.02.011

Kjeldahl, J. (1982). A new method for the estimation of nitrogen in organic compounds. Zeitschreft fur Analytische Chemie, 22, 366.

Malinska, K., Zabochnicka-Swiatek, M., & Dach, J. (2014). Effects of biochar amendment on ammonia emission during composting of sewage sludge. Ecological Engineering, 71, 474-478. doi: https://doi.org/10.1016/j.ecoleng.2014.07.0

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2003). Norma Oficial Mexicana NOM-004-SEMARNAT-2002, Protección ambiental. Lodos y biosólidos. México: Diario Oficial de la Federación.

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) & Comisión Nacional del Agua (CONAGUA). (2014). Inventario nacional de plantas municipales de potabilización y de tratamiento de aguas residuales en operación. Retrieved from http://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/Inventario_Nacional_Plantas1.pdf

Semblante, G. U., Hai, F. I., Huang, X., Ball, A. S., Price, W. E., & Nghiem, L. D. (2015). Trace organic contaminants in biosolids: Impact of conventional wastewater and sludge processing technologies and alternatives. Journal of Hazardous Materials, 300, 1-17. doi: https://doi.org/10.1016/j.jhazmat.2015.06. 037

Scoton, E. J., Battistelle, G. R. A., Bezerra, B. S., & Akutsu, J. (2016). A sewage sludge co-composting process using respirometric monitoring method in hermetic rotary reactor. Journal of Cleaner Production, 121, 169-175. doi: https://doi.org/10.1016/j.jclepro.2015.04.081

SPSS (2007). SPSS 16.0 para Windows. Chicago, IL, USA: Author.

United States Environmental Protection Agency (USEPA). (1999). Standards for the use or disposal of sewage sludge. 40 CFR Parts 403 and 503. Retrieved from http://archive.nacwa.org/getfile4f66.pdf?fn=ra99-24a.pdf

Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.

Yañez, R., Alonso, J. L., & Díaz, M. J. (2009). Influence of bulking agent on sewage sludge composting process. Bioresource Technology, 100(23), 5827-5833. doi: https://doi.org/10.1016/j.biortech.2009.05.073

Yuan, J., Yang, Q., Zhang, Z., Li, G., Luo, W., & Zhang, D. (2015). Use of additive and pretreatment to control odors in municipal kitchen waste during aerobic composting. JES, 37, 83-90. doi: https://doi.org/10.1016/j.jes.2015.03.028

Zhang, L., & Sun, X. (2015). Effects of earthworm casts and zeolite on the two-stage composting of green waste. Waste Management, 39, 119-129. doi: https://doi.org/10.1016/j.wasman.2015.02.037

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2017 Revista Chapingo Serie Ciencias Forestales y del Ambiente