Revista Chapingo Serie Ciencias Forestales y del Ambiente
Ecología, biotecnología y taxonomía de ectomicorriza para la conservación y aprovechamiento de Abies religiosa en zonas templadas de México
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Palabras clave

Bosques templados
estatus micorrízico
forestal
ITS

Cómo citar

Oros-Ortega, I., Andrade-Torres, A., Lara-Pérez, L. A., Guzmán-Olmos, R. F., Casanova-Lugo, F., Sáenz-Carbonell, L. A., & Córdova-Lara, I. (2017). Ecología, biotecnología y taxonomía de ectomicorriza para la conservación y aprovechamiento de Abies religiosa en zonas templadas de México. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 23(3), 411–426. https://doi.org/10.5154/r.rchscfa.2016.11.060

##article.highlights##

  • Se presentan 108 taxa de hongos potencialmente ectomicorrizógenos colectados en A. religiosa.
  • Solo para la ectomicorriza entre A. religiosa y T. floccosus existe descripción taxonómica y molecular.
  • La única ectomicorriza confirmada por morfología en A. religiosa es Cenococcum geophilum.
  • Solo los basidiomas de A. muscaria, L. luculentus tienen descripción molecular.
  • La ectomicorriza debe estudiarse a través de sistemática, morfoanatomía y biología molecular.

Resumen

Las poblaciones endémicas de Abies religiosa (abeto, oyamel) poseen gran importancia económica, ecológica y social; además, forman distintas interacciones con microorganismos edáficos, principalmente con hongos ectomicorrizógenos. Actualmente, las poblaciones aisladas (i. e. oyamel) están amenazadas por la deforestación, la expansión agrícola y el calentamiento global; por lo cual, es urgente entender las interacciones ecológicas y evolutivas con hongos ectomicorrizógenos. El objetivo de la presente investigación fue analizar el uso de la ecología, taxonomía y biología molecular de ectomicorrizas para comprender el papel que juegan estos hongos en árboles de A. religiosa en México. Se presentan áreas de oportunidad de investigación, así como los principales vacíos de información de la caracterización morfoanatómica/molecular, taxonomía y evolución de la simbiosis ectomicorrízica en bosques de A. religiosa. Para lo anterior, se reunió información de 108 taxa de hongos potencialmente ectomicorrizógenos, colectados en diferentes poblaciones de abetos. Los taxa con potencial alto para inocular A. religiosa son Sebacina dimitica, Clavulina cf. cinerea, Membranomyces sp., Thelephoraceae, Russula spp., Ramaria spp., Lactarius spp. e Inocybe spp. Finalmente, se discuten aspectos que faltan por resolver para determinar su potencial de uso, manejo, conservación y aprovechamiento de A. religiosa en zonas templadas de México. Este problema puede resolverse combinando herramientas moleculares con la descripción morfológica e histológica de morfotipos ectomicorrizógenos. Adicionalmente, se requieren metodologías que permitan estandarizar resultados para llegar a conclusiones más sólidas sobre las interacciones micorrízicas.

https://doi.org/10.5154/r.rchscfa.2016.11.060
PDF
ePUB

Citas

Anderson, I. C., & Cairney, J. W. G (2004). Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environmental Microbiology, 6(8), 769-779. doi: https://doi.org/10.1111/j.1462 2920.2004.00675.x

Andrade-Torres, A., Oros-Ortega, I., Solís-Ramos, L. Y., Guzmán-Olmos, R. F., Lara-Pérez, L. A., Sánchez-Velásquez, L. R., & Rodríguez, V. (2015). Simbiosis ectomicorrízica y diversidad de hongos ectomicorrízicos en dos estados sucesionales del bosque de Abies religiosa (H. B. K.) Schl. et Cham., del Parque Nacional Cofre de Perote, Veracruz. In: M. R. Pineda-López, L. R. Sánchez-Velásquez, & J. Noa-Carrazana (Eds), Ecología, biotecnología y conservación del género Abies en México, Estudios de Abies en México (pp 81-105). México: Editorial Académica Española.

Ángeles-Cervantes, E., & López-Mata, L. (2009). Supervivencia de una cohorte de Abies religiosa bajo diferentes condiciones post-incendio. Boletín de la Sociedad Botánica de México, 84, 25-33. Retrieved from http://www.redalyc.org/articulo.oa?id=57712091003

Argüelles-Moyao, A., Garibay-Orijel, R., Márquez-Valdelamar, L. M., & Arellano-Torres, E. (2017). Clavulina-Membranomyces is the most important lineage within the highly diverse ectomycorrhizal fungal community of Abies religiosa. Mycorrhiza, 27(1), 53-65. doi: https://doi.org/10.1007/s00572-016-0724-1

Aučina, A., Rudawska, M., Leski, T., Ryliškis, D., Pietras, M., & Riepšas, E. (2011). Ectomycorrhizal fungal communities on seedlings and conspecific trees of Pinus mugo grown on the coastal dunes of the Curonian Spit in Lithuania. Mycorrhiza , 21(3), 237-245. doi: https://doi.org/10.1007/s00572-010-0341-3

Avendaño-Hernandez, D. M., Acosta-Mireles, M., Carrillo-Anzures, F., & Etchevers-Barra, J. D. (2009). Estimación de biomasa y carbono en un bosque de Abies religiosa. Revista Fitotecnia Mexicana, 32(3), 233-238. Retrieved from http://www.redalyc.org/articulo.oa?id=61011739008

Baeza-Guzmán, Y., Medel-Ortiz, R., & Garibay-Orijel, R. (2017) Caracterización morfológica y genética de los hongos ectomicorrízicos asociados a bosques de Pinus hartwegii en el Parque Nacional Cofre de Perote, Veracruz. Revista Mexicana de Biodiversidad, 88(1), 41-48. doi: https://doi.org/10.1016/j.rmb.2017.01.027

Bidartondo, M. I. (2005). The evolutionary ecology of myco-heterotrophy. New Phytologist, 167(2), 335-352. doi: https://doi.org/10.1111/j.1469-8137.2005.01429.x

Brundrett, M. C. (2009). Mycorrhiza l associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil, 320(1-2), 37-77. doi: https://doi.org/10.1007/s11104-008-9877-9

Brundrett, M. C., Bougher, N., Dell, B., Grove, T., & Malajczuk, N. (1996). Working with mycorrhizas in forestry and agriculture. Canberra, Australia: Australian Centre for International Agricultural.

Bruns, T. D., & Gardes, M. (1993). Molecular tools for the identification of ectomycorrhizal fungi: taxon-specific oligonucleotide probes for the suilloid fungi. Molecular Ecology, 2(4), 233-242. doi: https://doi.org/10.1111/j.1365-294X.1993.tb00013.x

Burrola-Aguilar, C., Garibay-Orijel, R., & Argüelles-Moyao, A. (2013). Abies religiosa forests harbor the highest species density and sporocarp productivity of wild edible mushrooms among five different vegetation types in a neotropical temperate forest region. Agroforestry Systems, 87(5), 1101-1115. doi: https://doi.org/10.1007/s10457-013-9623-z

Challenger, A. (1998). Utilización y Conservación de los Ecosistemas Terrestres de México. Pasado, Presente y Futuro. México: CONABIO-UNAM-Instituto de biología-Agrupación Sierra Madre.

Comandini, O., Rinaldi, A., & Kuyper, T. W. (2012). Measuring and estimating ectomycorrhizal Fung Divers: A continuous challenge. In: M. Pagano (Ed.), Mycorrhiza: occurrence in natural and restored environments (pp. 165-200). Brazil: Nova Science Publishers.

Dahlberg, A. (1997). Population ecology of Suillus variegatus in old Swedish Scots pine forests. Mycological Research, 101(1), 47-54. doi: https://doi.org/10.1017/S0953756296002110

De Román, M., Claveria, V., & de Miguel, A. M. (2005). A revision of the descriptions of ectomycorrhizas published since 1961. Mycological Research, 109(10), 1063-104. doi: https://doi.org/10.1017/S0953756205003564

García, M. O., Smith, J. E., Luoma, D. L., & Jones, M. D. (2016) Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone. Mycorrhiza , 26(4), 275-286. doi: https://doi.org/10.1007/s00572-015-0668-x

García-Bastian, R. M., López-López, M. A., Velázquez-Martínez, A., & Pérez-Moreno, J. (1998). Mycorrhiza l and saprotrophic macrofungi in declining sacred-fir stands. Micología Neotropical Aplicada, 11, 9-21. Retrieved from http://www.cabi.org/ISC/abstract/19991003440

Gardes, M., & Bruns, T. D. (1996). Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Canadian Journal of Botany, 74(10), 1572-1583. doi: https://doi.org/10.1139/b96-190

Honrubia, M. (2009). Las micorrizas: una relación planta-hongo que dura más de 400 millones de años. Anales del Jardín Botánico de Madrid, 66(1), 133-144. doi: https://doi.org/10.3989/ajbm.2226

Hortal, S., Pera, J., & Parladé, J. (2009). Field persistence of the edible ectomycorrhizal fungus Lactarius deliciosus: effects of inoculation strain, initial colonization level and site characteristics. Mycorrhiza , 19(3), 167-177. doi: https://doi.org/10.1007/s00572-009-0228-3

Jaramillo-Correa, J. P., Aguirre-Planter, E., Khasa, D. P., Eguiarte, L. E., Piñero, D., Furnier, G., & Bousquet, J. (2008). Ancestry and divergence of subtropical montane forest isolates: molecular biogeography of the genus Abies (Pinaceae) in southern México and Guatemala. Molecular Ecology, 17(10), 2476-2490. doi: https://doi.org/10.1111/j.1365-294X.2008.03762.x

Kjøller, R., Nilsson, L. O., Hansen, K., Schmidt, I. K., Vesterdal, L., & Gundersen, P. (2012). Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient. New Phytologist, 194(1), 278-286. doi: https://doi.org/10.1111/j.1469-8137.2011.04041.x

Koide, R. T., Fernandez, C., & Petprakob, K. (2011). General principles in the community ecology of ectomycorrhizal fungi. Annals of Forest Science, 68(1), 45-55. doi: https://doi.org/10.1007/s13595-010-0006-6

Lamus, V., Franco, S., Montoya, L., Endara, A. R., Caballero, L. A., & Bandala., V. M. (2015). Mycorrhiza l synthesis of the edible mushroom Turbinellus floccosus with Abies religiosa from central Mexico. Mycoscience, 56, 622-626. doi: https://doi.org/10.1016/j.myc.2015.07.001

Landeweert, R., Veenman, C., Kuyper, T. W., Fritze, H., Wernars, K., & Smit, E. (2003). Quantification of ectomycorrhizal mycelium in soil by real-time PCR compared to conventional quantification techniques. FEMS Microbiology Ecology, 45(3), 283-292. doi: https://doi.org/10.1016/S0168-6496(03)00163-6

LePage, B. A. (2003). The evolution, biogeography and palaeoecology of the Pinaceae based on fossil and extant representatives. Acta Horticulturae, 615, 29-52. doi: https://doi.org/10.17660/ActaHortic.2003.615.1

Montoya, L., Bandala, V. M., & Garay-Serrano, E. (2015). The ectomycorrhizas of Lactarius cuspidoaurantiacus and Lactarius herrerae associated with Alnus acuminata in Central Mexico. Mycorrhiza , 25(6), 457-467. doi: https://doi.org/10.1007/s00572-015-0625-8

Morales-Mávil, J. E., & Aguilar-Rodríguez, S. H. (2000). Avifauna del Parque Nacional Cofre de Perote. Foresta Veracruzana, 2(1), 35-40. Retrieved from http://www.redalyc.org/articulo.oa?id=49720104

Pérez-Miranda, R., Moreno-Sánchez, F., González-Hernández, A., & Arriola-Padilla, V. J. (2015). Distribución de Abies religiosa (Kunth) Schltdl. et. Cham. y Pinus montezumae Lamb. ante el cambio climático. Revista Mexicana de Ciencias Forestales, 5(25), 18-33. Retrieved from http://cienciasforestales.inifap.gob.mx/editorial/index.php/Forestales/article/view/3892/3249.

Peterson, R. L., Massicotte, H. B., & Melville, L. H. (2004). Mycorrhizas: anatomy and cell biology. Ottawa: CABI Publishing.

Read, D. J., & Pérez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? New Phytologist, 157(3), 475-492. doi: https://doi.org/10.1046/j.1469-8137.2003.00704.x

Redecker, D., Kodner, R., & Graham, L. E. (2002). Palaeoglonius grayi from the Ordovician. Mycotaxon, 84, 33-37. Retrieved from http://www.mycotaxon.com/vol/84.html

Reverchon, F., Ortega‐Larrocea, M., Bonilla‐Rosso, G., & Pérez‐Moreno, J. (2012). Structure and species composition of ectomycorrhizal fungal communities colonizing seedlings and adult trees of Pinus montezumae in Mexican neotropical forests. FEMS microbiology ecology, 80(2), 479-487. doi: https://doi.org/10.1111/j.1574-6941.2012.01314.x

Rinaldi, A. C., Comandini, O., & Kuyper, T. W. (2008). Ectomycorrhizal fungal diversity: Separating the wheat from the chaff. Fungal Diversity, 33, 1-45. Retrieved from http://www.fungaldiversity.org/fdp/sfdp/33-1.pdf

Rodríguez-Tovar, A., Xoconostle-Cásares, B., & Valdés, M. (2004). Ecología molecular de los hongos ectomicorrízicos. Revista Fitotecnia Mexicana , 27(3), 267-278. Retrieved from http://www.revistafitotecniamexicana.org/documentos/27-3/7a.pdf

Sáenz-Romero, C., Rehfeldt, G. E., Duval, P., & Lindig-Cisneros, R. A. (2012). Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico. Forest Ecology and Management, 275, 98-106. doi: https://doi.org/10.1016/j.foreco.2012.03.004

Sánchez-Velásquez, L. R., Pineda-López, M., & Hernández-Martínez, A. (1991). Distribución y estructura de la población de Abies religiosa (H. B. K.) Schl. et. Cham. en el Cofre de Perote, estado de Veracruz, México. Acta Botánica Mexicana, 16, 45-55. Retrieved from http://www.redalyc.org/articulo.oa?id=57401604

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., & Chen, W. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241-6246. doi: https://doi.org/10.1073/pnas.1117018109

Smith, S. E., & Read, D. J. (2008). Mycorrhiza l symbiosis. San Diego California: Academic Press.

Taylor, D. L., Walters, W. A., Lennon, N. J., Bochicchio, J., Krohn, A., Caporaso, J. G., & Pennanen, T. (2016). Accurate estimation of fungal diversity and abundance through Improved lineage-specific primers optimized for illumina amplicon sequencing. Applied and Environmental Microbiology, 82(24), 7217-7226. doi: https://doi.org/10.1128/AEM.02576-16

Tedersoo, L., Nilsson, R. H., Abarenkov, K., Jairus, T., Sadam, A., Saar, I., Bahram, M., Bechem, E., Chuyon, G., & Kõljalg, U. (2010). 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist, 188(1), 291-301. doi: https://doi.org/10.1111/j.1469-8137.2010.03373.x

Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., … Abarenkov, K. (2014). Global diversity and geography of soil fungi. Science, 346(6213), 1078. doi: https://doi.org/10.1126/science.1256688

Valdés-Ramírez, M. (1972). Microflora of a coniferous forest of the mexican basin. Plant and Soil, 36(1-3), 31-38. doi: https://doi.org/10.1007/BF01373453

Van der Heijden, M., Martin, F. M., Selosse, M. A., & Sanders, I. R. (2015). Mycorrhiza l ecology and evolution: the past, the present, and the future. New Phytologist, 205(4), 1406-1423. doi: https://doi.org/10.1111/nph.13288

Villers-Ruíz, L., & Trejo-Vázquez, I. (1998). El impacto del cambio climático en los bosques y áreas naturales protegidas de México. Interciencia, 8(2), 141-157. Retrieved from https://www.researchgate.net/publication/287831828_Impacto_del_Cambio_Climatico_en_los_bosques_y_areas_naturales_protegidas_de_Mexico

Xiang, X., Cao, M., & Zhou, Z. (2007). Fossil history and modern distribution of the genus Abies (Pinaceae). Frontiers of Forestry in China, 2(4), 355-365. doi: https://doi.org/10.1007/s11461-007-0058

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2017 Revista Chapingo Serie Ciencias Forestales y del Ambiente