Revista Chapingo Serie Ciencias Forestales y del Ambiente
Characteristics and properties of torrefied biomass pellets from Gmelina arborea and Dipterix panamensis at different times
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Fuel
X-rays
density profile
compression resistance

How to Cite

Gaitán-Álvarez, J. ., & Moya, R. (2016). Characteristics and properties of torrefied biomass pellets from Gmelina arborea and Dipterix panamensis at different times. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 22(3), 325–337. https://doi.org/10.5154/r.rchscfa.2015.09.044

Abstract

Torrefaction and pelletizing were studied in the generation of energy from lignocellulosic residues to increase the energy properties of the biomass. The aim of this study was torrefied sawdust from Gmelina arborea and Dipteryx panamensis at 200 °C in three time period: 0, 15 and 20 minutes. Then with the biomass, pellets of 6 mm diameter were manufactured and their physical properties, calorific value, density and compression force were evaluated. Both species had similar physical characteristics according to the average diameter (0.50 mm), length (21.50 mm), and water absorption rate (6.00 %). The calorific value increased from 9,749 kJ·kg-1 in un-terrified biomass to 18,126 kJ·kg-1 with torrefied biomass. The pellets from D. panamesis had greater density and compression force compared to G. arborea biomass. Based on the results, pellet compression force decreases as the torrefaction time increases. There is positive correlation between bulk density of pellets and compression force. The D. panamensis species has better torrefaction behavior and pelletizing than the wood of G. arborea.

https://doi.org/10.5154/r.rchscfa.2015.09.044
PDF
ePUB

References

Aarseth, K. A., & Prestlokken, E. (2003). Mechanical properties of feed pellets: Weibull analysis. Biosystems Engineering, 84, 349-361. doi: https://doi.org/10.1016/S1537-5110(02)00264-7

Ahn, B. J., Chang, H. S., Lee, S. M., Choi, D. H., Cho, S. T., Han, G. S., & Yang, I. (2014). Effect of binders on the durability of wood pellets fabricated from Larix kaemferi C. and Liriodendron tulipifera L. sawdust. Renewable Energy, 62, 18-23. doi: https://doi.org/10.1016/j.renene.2013.06.038

American Society for Testing and Materials (ASTM). (2003). D 5865-04 Standard test method for gross calorific value of coal and coke. Philadelphia, USA: ASTM International.

Aragón-Garita, S., Moya, R., Bond, B., Valaert, J., & Tomazello, F. M. (2016). Production and quality analysis of pellets manufactured from five potential energy crops in the Northern Region of Costa Rica. Biomass and Bioenergy, 87, 84-95. doi: https://doi.org/10.1016/j.biombioe.2016.02.006

Arias, B., Pevida, C., Fermoso, J., Plaza, M. G., Rubiera, F., & Pis, J. J. (2008). Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology, 89(2), 169-175. doi: https://doi.org/10.1016/j.fuproc.2007.09.002

Bahng, M., Mukarakate, C., Robichaud, D., & Nimlos, M. (2009). Current technologies for analysis of biomass thermochemical processing. Analytica Chimical Acta, 651, 117-138. doi: https://doi.org/10.1016/j.aca.2009.08.016

Cao, L., Yuan, X., Li, H., Li, C., Xiao, Z., Jiang, L., & Zeng, G. (2015). Complementary effects of torrefaction and co-pelletization: Energy consumption and characteristics of pellets. Bioresource Technology, 185, 254-262. doi: https://doi.org/10.1016/j.biortech.2015.02.045

Carone, M. T., Pantaleo, A., & Pellerano, A. (2011). Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L. Biomass and Bioenergy, 35(1), 402-410. doi: https://doi.org/10.1016/j.biombioe.2010.08.052

Castellano, J. M., Gómez, M., Fernández, M., Esteban, L. S., & Carrasco, J. E. (2015). Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses. Fuel, 139, 629-636. doi: https://doi.org/10.1016/j.fuel.2014.09.033

Chen, W., Peng, J., & Bi, X. (2015). A state-of-the art review of biomass torrefaction, densifiation and applications. Renewable and Sustainable Energy Rewiews, 44, 847-866. doi: https://doi.org/10.1016/j.rser.2014.12.039

Fasina, O. (2008). Physical properties of peanut hull pellets. Bioresource Technology, 99(5), 1259-1266. doi: https://doi.org/10.1016/j.biortech.2007.02.041

Ferro, D., Beatón, P., & Zanzi, R. (2009). Torrefacción de biomasa densificada. Tecnología Química, 29, 180-186. http://www.redalyc.org/articulo.oa?id=445543761022

Filbakk, T., Skjevrak, G., Høibø, O., Dibdiakova, J., & Jirjis, R. (2011). The influence of storage and drying methods for Scots pine raw material on mechanical pellet properties and production parameters. Fuel Processing Technology, 92, 871–878. doi: https://doi.org/10.1016/j.fuproc.2010.12.001

InfoStat (2014). Manual del usuario. Argentina: Universidad Nacional de Córdoba.

Li, H., Liu, X., Legros, R., Bi, X. T., Lim, C., & Sokhansanj, S. (2012). Pelletization of torrefied sawdust and properties of torrefied pellets. Applied Energy, 93, 680- 685. doi: https://doi.org/10.1016/j.apenergy.2012.01.002

Mani, S., Tabil, L. G., & Sokhansanj, S. (2003). An overview of compaction of biomass grinds. Powder Handling & Processing, 15, 160-168. https://www.researchgate.net/publication/230704670_An_overview_of_compaction_of_biomass_grinds

Moya, R., & Tenorio, C. (2013). Fuelwood characteristics and its relation with extractives and chemical properties of ten fast growth species in Costa Rica. Biomass and Bioenergy, 56, 14-21. doi: https://doi.org/10.1016/j.biombioe.2013.04.013

Peng, J. H., Bi, H. T., Jim, C. L., & Sokhansanj, S. (2013). Study on density, hardness, and moisture uptake of torrefied wood pellets. Energy & Fuels, 27(2), 967-974. doi: https://doi.org/10.1021/ef301928q

Petit, B., & Montagnini, F. (2004). Growth equations and rotation ages of ten native tree species in mixed and pure plantations in the humid neotropics. Forest Ecology and Management, 199(2), 243-257. doi: https://doi.org/10.1016/j.foreco.2004.05.039

Quirino, W. F., de Oliveira, P. I. V., de Oliveira, M. A. C., de Souza, F., & Tomazello, F. M. (2012). Densitometria de raios x na análise da qualidade de briquetes de resíduos de madeira X Ray densitometry for waste wood briquetts analysis. Scientia Forestalis, 40(96), 525- 536. http://www.ipef.br/publicacoes/scientia/nr96/cap11.pdf

Stelte, W., Sanadi, A. R., Shang, L., Holm, J. K., Ahrenfeldt, J., & Henriksen, U. B. (2012). Recent developments in biomass pelletization–A review. BioResources, 7(3), 4451-4490. doi: https://doi.org/10.15376/biores.7.3.4451-4490

Tenorio, C., & Moya, R. (2012). Evaluation of different approaches for the drying of lignocellulose residues. BioResources, 7(3), 3500-3514. doi: https://doi.org/10.15376/biores.7.3.3500-3514

Tenorio, C., Moya, R., Salas, C., & Berrocal, A. (2016). Evaluation of wood properties from six native species of forest plantations in Costa Rica. Bosque, 37(1), 71-84. doi: https://doi.org/10.4067/S0717-92002016000100008

Tenorio, C., Moya, R., Tomazello, F. M., & Valaert, J. (2015). Application of the X-ray densitometry in the evaluation of the quality and mechanical properties of biomass pellets. Fuel Processing Technology, 132, 62-83. doi: https://doi.org/10.1016/j.fuproc.2014.12.040

Van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A., & Ptasinski, K. J. (2011). Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass Bioenergy, 35, 3748-3762. doi: https://doi.org/10.1016/j.biombioe.2011.06.023

Wang, C., Peng, J., Li, H., Bi, X., Legros, R., Lim, C., & Sokhansanj, C. (2013). Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresource Technology, 127, 318-325. doi: https://doi.org/10.1016/j.biortech.2012.09.092

Wu, M. R., Schott, D. L., & Lodewijks, G. (2011). Physical properties of solid biomass. Biomass Bioenergy, 35, 2093-2105. doi: https://doi.org/10.1016/j.biombioe.2011.02.020

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Revista Chapingo Serie Ciencias Forestales y del Ambiente