Revista Chapingo Serie Ciencias Forestales y del Ambiente
Trichoderma species from the cacao agroecosystem with biocontrol potential of Moniliophthora roreri
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Frosty pod rot in cacao
biological control
Theobroma cacao
Mycoparasitism

How to Cite

Reyes-Figueroa, O., Ortiz-García, C. F. ., Torres-de la Cruz, M., Lagunes-Espinoza, L. del C. ., & Valdovinos-Ponce, G. . (2016). Trichoderma species from the cacao agroecosystem with biocontrol potential of Moniliophthora roreri. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 22(2), 149–163. https://doi.org/10.5154/r.rchscfa.2015.08.036

Abstract

Frosty pod rot in cacao (Moniliophthora roreri) is the main limitation on the production of cacao (Theobroma cacao) in Mexico. A sustainable alternative for the control of the disease is the use of the Trichoderma mushroom. The objective of this study was to select isolates that are native to Trichoderma with the best antagonist and physiological in vitro characteristics for the control of M. roreri. For this, 50 isolates of Trichoderma obtained in the cacao agroecosystem were characterized. Mycelial growth and the production of conidia at 25, 30 and 35 °C were considered the physiological variables. Mycoparasitism, antibiosis and potential antagonism were the antagonist variables. Significant differences (= 0.0001) were found in all evaluated variables. The interval of the optimal temperature for mycelial growth and the production of conidia was 25 to 30 °C. Mycoparasitism varied between 0 and 100 %, and only the isolates of six species showed this characteristic. Antibiosis varied between 6.8 and 55.5 % and potential antagonism varied from 3.4 to 69.0 %. Trichoderma virens (TTC017) and T. harzianum (TTC090, TTC039, TTC073) showed the best potential in vitro biocontrol, so they are promising strains for future investigations on biological control of cacao moniliasis.

https://doi.org/10.5154/r.rchscfa.2015.08.036
PDF
ePUB

References

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267. doi: https://doi.org/10.1093/jee/18.2.265a

Bailey, B. A., Bae, H., Strem, M. D., Crozier, J., Thomas, S. E., Samuels, G. J., …Holmes, K. A. (2008). Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control, 46(1), 24–35. doi: https://doi.org/10.1016/j.biocontrol.2008.01.003

Bateman, R. P., Hidalgo, E., García, J., Arroyo, C., Ten Hoopen, G. M., Adonijah, V., & Krauss, U. (2005). Application of chemical and biological agents for the management of frosty pod rot (Moniliopthora roreri) in Costa Rican cocoa (Theobroma cacao). Annals of Applied Biology, 147(2), 129–138. doi: https://doi.org/10.1111/j.1744-7348.2005.00012.x

Dimbi, S. N., Maniania, N. K., Lux, S. A., & Mueke, J. M. (2004). Effect of constant temperaturas on germination, radial growth and virulence of Metarhizium anisopliae to three species of African tephritid druit flies. BioControl, 49(1), 83–94. doi: https://doi.org/10.1023/B:BICO.0000009397.84153.79

Evans, H. C., Holmes, K. A., & Thomas, S. E. (2003). Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycological Progress, 2(2), 149–160. doi: https://doi.org/10.1007/s11557-006-0053-4

Garcia-Simoes, M. L., Tauk-Tornisielo, S. M., Rocha-Niella, G., & Tapia-Tapia, D. M. (2012). Evaluation of Trichoderma spp. for the biocontrol of Moniliophthora perniciosa Subgroup 1441. Journal of Biology and Life Science, 3(1), 18–36. doi: https://doi.org/10.5296/jbls.v3i1.1097

Holmes, K. A., Schroers, H. J., Thomas, S. E., Evans, H. C., & Samuels, G. J. (2004). Taxonomy and biocontrol potential of a new species of Trichoderma from Amazon basin in South America. Mycological Progress, 3(3), 199–210. doi: https://doi.org/10.1007/s11557-006-0090-z

Hoyos-Carvajal, L., Duque, G., & Orduz, P. S. (2008). Antagonismo in vitro de Trichoderma spp. sobre aislamientos de Sclerotinia spp. y Rhizoctonia spp. Revista Colombiana de Ciencias Hortícolas, 2(1), 76–86. doi: https://doi.org/10.17584/rcch.2008v2i1.1175

Jalil, R. C., Norero, S. A., & Apablaza, G. (1997). Efecto de la temperatura sobre el crecimiento micelial de Botrytis cinerea y de su antagonista Trichoderma harzianum. Ciencia e Investigación Agraria, 24(2), 2–4. http://agris.fao.org/agris-search/search.do?recordID=CL1999000466

Krauss, U., & Soberanis, W. (2001). Biocontrol of cocoa pod diseases with mycoparasite mixtures. Biological Control, 22(2), 149–158. doi: https://doi.org/10.1006/bcon.2001.0956

Krauss, U., Ten, H. G., Hidalgo, E., Martínez, A., Stirrup, T., Arroyo, C., … Palacios, M. (2006). The effect of cane molasses amendment biocontrol of frosty pod rot (Moniliophthora roreri) and black pod (Phytophthora spp.) of cocoa (Theobroma cacao) in Panama. Biological Control, 39(1), 232–239. doi: https://doi.org/10.1016/j.biocontrol.2006.06.005

Monte, E. (2001). Understanding Trichoderma: Between biotechnology and microbial ecology. International Microbiology, 4(1), 1–4. doi: https://doi.org/10.1007/s101230100001

Phillips, M. W., Coutiño, A., Ortiz, C. F., López, A. P., Hernández, J., & Aime, M. C. (2006). First report of Moniliophthora roreri causing frosty pod rod (moniliasis disease) of cocoa in Mexico. Plant Pathology, 55(4), 584. doi: https://doi.org/10.1111/j.1365-3059.2006.01418.x

Phillips, M. W., & Wilkinson, M. J. (2007). Frosty pod of cacao: A disease with a limited geographic range but unlimited potential for damage. Phytopathology, 97(12), 1644–1647. doi: https://doi.org/10.1094/PHYTO-97-12-1644

Phillips-Mora, W., Arciniegas-Leal, A., Mata-Quiros, A., & Motomajor-Arias, J. C. (2012). Catálogo de clones de cacao. Turrialba, Costa Rica: CATIE.

Soberanis, W., Ríos, R., Arévalo, E., Zúñiga, L., Cabezas, O., & Krauss, U. (1999). Increased frequency of phytosanitary pod removal in cacao (Theobroma cacao) increases yield economically in eastern Peru. Crop Protection, 18, 677–685. doi: https://doi.org/10.1016/S0261-2194(99)00073-3

Sobieralski, K., Siwulski, M., Komon, Ż. M., Błaszczyk, L., Górski, R., Spiżewski, T., & Sas, G. I. (2012). Evaluation of the growth of Trichoderma pleurotum and Trichoderma pleuroticola isolates and their biotic interaction with Pleurotus sp. Journal of Plant Protection Research, 52, 235– 239. doi: https://doi.org/10.2478/v10045-012-0037-0

Statistical Analysis System (SAS Institute). (1998). SAS/STAT 6.03 User’s guide. Cary, NC, USA: Author.

Torres-de la Cruz, M., Ortiz-García, C. F., Bautista-Muñoz, C., Ramírez-Pool, J. A., Ávalos-Contreras, N., CappelloGarcía, S., & De la Cruz-Pérez, A. (2015) Diversidad de Trichoderma en el agroecosistema cacao del estado de Tabasco, México. Revista Mexicana de Biodiversidad, 86, 947–961. doi: https://doi.org/10.1016/j.rmb.2015.07.012

Torres-de la Cruz, M., Ortiz-García, C. F., Téliz-Ortiz, D., Mora-Aguilera, A., & Nava-Díaz C. (2011). Temporal progress and integrated management of frosty pod rot (Moniliophthora roreri [Cif y Par.] Evans et al.) of cocoa (Theobroma cacao) in Tabasco, Mexico. Journal of Plant Pathology, 93, 31–36. doi: https://doi.org/10.4454/jpp.v93i1.270

Vázquez, L. L., Matienzo, Y., Veitía, M., & Alfonso, J. (2008). Conservación y manejo de enemigos naturales de insectos fitófagos en los sistemas agrícolas de Cuba. Cuba: INISAV

Vélez-Arango, P., Estrada-Valencia, M., González-García, M. T., Valderrama-Fonseca, A. M., & Bustillo-Pardey, A. E. (2001). Caracterización de aislamientos de Beauveria bassiana para el control de la broca del café. Manejo Integrado de Plagas, 62(1), 38–53. http://www.sidalc.net/REPDOC/A2113E/A2113E.PDF

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Revista Chapingo Serie Ciencias Forestales y del Ambiente