Revista Chapingo Serie Ciencias Forestales y del Ambiente
Potential distribution model of Pinaceae species under climate change scenarios in Michoacán
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Maximum entropy
neural networks
ecological niche
endemic species

How to Cite

Cruz-Cárdenas, G., López-Mata, L., Silva, J. T. ., Bernal-Santana, N., Estrada-Godoy, F., & López-Sandoval, J. A. . (2016). Potential distribution model of Pinaceae species under climate change scenarios in Michoacán. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 22(2), 135–148. https://doi.org/10.5154/r.rchscfa.2015.06.027

Abstract

Michoacán is the fifth state with the greatest diversity of plant species, excelling due to its richness in families, genera and species of flowering trees in Mexico. Therefore, in this paper the potential distribution of 12 species of Pinaceae was evaluated in current conditions and future climate change scenarios through ecological niche models. Data on the current climate, future scenarios, soil properties and digital elevation model were used as environmental predictors. The modeling was done using the Maxent software. 75 % of the data on the species presence was used for the training of the models and the remaining 25 % for model validation. The output grids were classified into three categories of area for the species distribution: unsuitable, marginal and suitable. The models show that there will be a 16 to 40 % decrease in suitable areas in the 2015-2039 and 2075-2099 periods, respectively. The species most affected by the decrease in their distribution will be Abies religiosaPinus leiophylla and Pinus teocote.

https://doi.org/10.5154/r.rchscfa.2015.06.027
PDF
ePUB

References

Adamopoulos, S., & Passialis, C. (2010). Relationship of toughness and modulus of elasticity in static bending of small clear spruce wood specimens. European Journal of Wood and Wood Products, 68(1), 109-111. doi: https://doi.org/10.1007/s00107-009-0365-6

American Society for Testing and Materials (ASTM International). (2001). ASTM E 18 7 6 - 0 1 . S t a n d a r d test method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio by impulse excitation of vibration. West Conshohocken, PA, USA: Author. doi: https://doi.org/10.1520/E1876-09

American Society for Testing and Materials (ASTM International). (2014). ASTM C1259-14.Standardtest method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio for advanced ceramics by impulse excitation of vibration.West Conshohocken, PA, USA: Author. doi: https://doi.org/10.1520/C1259

Brémaud, I., Gril, J., & Thibaut, B. (2011). Anisotropy of wood vibrational properties: Dependence on grain angle and review of literature data. Wood Scienceand Technology, 45(4), 735-754. doi: https://doi.org/10.1007/s00226-010-0393-8

Gorišek, Ž., & Straže, A. (2013). Evaluation of material characteristics of xylite – Part 1. Influence of moisture content on some mechanical properties. Drvna Industrija, 64(4), 305-311. doi: https://doi.org/10.5552/drind.2013.1309

Gutiérrez, P. H., & De la Vara, S. R. (2012). Análisis y diseño de experimentos (3a ed.). México: Mc Graw Hill.

Hernández, R. E., Passarini, L., & Koubaa, A. (2014). Effects of temperature and moisture content on selected wood mechanical properties involved in the chipping process. Wood Science and Technology, 48(6), 1281-1301. doi: https://doi.org/10.1007/s00226-014-0673-9

International Organization for Standardization. (ISO). (2014). ISO 13061-1:2014. Wood-Determination of moisture content for physical and mechanical tests. ISO Catalog 79 Wood technology; 79.040. Wood, sawlogs and saw timber. Geneva, Switzerland: Author. http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?ic s1=79&ics2=040&ics3=&csnumber=60069

Keunecke, D., Sonderegger, W., Pereteanu, K., Lüthi, T., & Niemz, P. (2007). Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Science and Technology, 41(4), 309–327. doi: https://doi.org/10.1007/s00226-006-0107-4

Köhler, J., Sørensen, J. D., & Faber, M. H. (2007). Probabilistic modeling of timber structures. Structural Safety, 29(4), 255–267. doi: https://doi.org/10.1016/j.strusafe.2006.07.007

Kránitz, K., Deublein, M., & Niemz, P. (2014). Determination of dynamic elastic moduli and shear moduli of aged wood by means of ultrasonic devices. Materials and Structures, 47(6), 925–936. doi: https://doi.org/10.1617/s11527-013-0103-8

Mackerle, J. (2005). Finite element analyses in wood research: A bibliography. Wood Science and Technology, 39(7), 579- 600. doi: https://doi.org/10.1007/s00226-005-0026-9

Nadir, Y., Nagarajan, P., & Midhun, A. J. (2014). Measuring elastic constants of Hevea brasiliensis using compression and Iosipescu shear test. European Journal of Wood and Wood Products, 72(6), 749-758. doi: https://doi.org/10.1007/s00107-014-0842-4

Naruse, K. (2003). Estimation of shear moduli of wood by quasi-simple shear tests. Journal of Wood Science, 49(6), 479–484. doi: https://doi.org/10.1007/s10086-003-0515-0

Olsson, A., & Källsner, B. (2013). Shear modulus of structural timber evaluated by means of dynamic excitation and FE analysis. Materials and Structures, 48(4), 977-985. doi: https://doi.org/10.1617/s11527-013-0208-0

Ozyhar, T., Hering, S., Sanabria, S. J., & Niemz, P. (2013). Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Science and Technology, 47(2), 329-341. doi: https://doi.org/10.1007/s00226-012-0499-2

Sotomayor, C. J. R. (2015). Banco FITECMA de características físico-mecánicas de maderas mexicanas. Morelia, Michoacán, México: Universidad Michoacana de San Nicolás de Hidalgo. doi: https://doi.org/10.13140/RG.2.1.3497.4884

Sotomayor-Castellanos, J. R., Guridi-Gómez, L. I., & García- Moreno, T. (2010). Características acústicas de la madera de 152 especies mexicanas. Velocidad del ultrasonido, módulo de elasticidad, índice material y factor de calidad. Base de datos. Investigación e Ingeniería de la Madera, 6(1), 3-32. https://www.researchgate.net/publication/261064568_Investigacion_e_Ingenieria_ de_la_Madera_2010_Vol_6_No_1

Sotomayor-Castellanos, J. R., Guridi-Gómez, L. I., & García- Moreno, T. (2010). Características acústicas de la madera de 152 especies mexicanas. Velocidad del ultrasonido, módulo de elasticidad, índice material y factor de calidad. Base de datos. Investigación e Ingeniería de la Madera, 6(1), 3-32. www.researchgate.net/publication/261064568_Investigacion_e_Ingenieria_de_la_Madera_2010_Vol_6_No_1

Sotomayor-Castellanos, J. R.,& Hernández-Maldonado, S. A. (2012). Características elásticas de maderas mexicanas. Investigación e Ingeniería de la Madera, 8(2), 3-78. http://www.researchgate.net/publication/261064509_Investigacin_e_Ingeniera_de_la_Madera_2012_Vol._8_No._2

Statpoint Technologies, Inc. (2006). Statgraphics® Centurion XV. Warrenton, Virginia, USA: Author.

Tankut, N., Tankut, A. N., & Zor, M. (2014). Finite element analysis of wood materials. Drvna Industrija, 65(2), 159- 171. doi: https://doi.org/10.5552/drind.2014.1254

Tiryaki, S., & Hamzaçebi, C. (2014). Predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of heat treated woods by artificial neural networks. Measurement, 49, 266-274. doi: https://doi.org/10.1016/j.measurement.2013.12.004

Yoshihara, H. (2012a). Off-axis Young’s modulus and off-axis shear modulus of wood measured by flexural vibration tests. Holzforschung, 66(2), 207-213. doi: https://doi.org/10.1515/HF.2011.118

Yoshihara, H. (2012b). Shear modulus and shear strength evaluation of solid wood by a modified ISO 15310 square-plate twist method. Drvna Industrija, 63(1), 51-55. doi: https://doi.org/10.5552/drind.2012.1125

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Revista Chapingo Serie Ciencias Forestales y del Ambiente