Revista Chapingo Serie Ciencias Forestales y del Ambiente
Dynamic modulus of rigidity of seven types of mexican wood determined by torsional vibration
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Density
humidity content
torsional natural frequency
mechanical characterization

How to Cite

Sotomayor-Castellanos, J. R. (2016). Dynamic modulus of rigidity of seven types of mexican wood determined by torsional vibration. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 22(2), 125–134. https://doi.org/10.5154/r.rchscfa.2015.03.008

Abstract

The modulus of rigidity of wood is useful for the structural calculus and manufacture of wood products. The objective of this research was to determine the modulus of rigidity (GLT) of seven species of Mexican woods, performing torsional vibration tests. The density, moisture content and natural frequency of smaller specimens were also determined. The GLT values of the seven species are similar to those proposed by the revised authors for woods with comparable density and moisture content. The moduli of rigidity varied between 695 MPa and 2,807 MPa. The values for each species oscillate around the linear prediction proposed by the elastic model of the wood. The wood density and the natural frequency of vibrations in torsion are predictors of the dynamic modulus of rigidity with coefficients of determination of 0.98 and 0.81 respectively.

https://doi.org/10.5154/r.rchscfa.2015.03.008
PDF
ePUB

References

Adamopoulos, S., & Passialis, C. (2010). Relationship of toughness and modulus of elasticity in static bending of small clear spruce wood specimens. European Journal of Wood and Wood Products, 68(1), 109-111. doi: https://doi.org/10.1007/s00107-009-0365-6

American Society for Testing and Materials (ASTM International). (2001). ASTM E 1876 - 01 . Standar d test method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio by impulse excitation of vibration. West Conshohocken, PA, USA: Author. doi: https://doi.org/10.1520/E1876-09

American Society for Testing and Materials (ASTM International). (2014). ASTM C1259-14.Standardtest method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio for advanced ceramics by impulse excitation of vibration.West Conshohocken, PA, USA: Author. doi: https://doi.org/10.1520/C1259

Brémaud, I., Gril, J., & Thibaut, B. (2011). Anisotropy of wood vibrational properties: Dependence on grain angle and review of literature data. Wood Scienceand Technology, 45(4), 735-754. doi: https://doi.org/10.1007/s00226-010-0393-8

Goriše k, Ž., & Straže, A. (2013). Evaluation of material characteristics of xylite – Part 1. Influence of moisture content on some mechanical properties. Drvna Industrija, 64(4), 305-311. doi: https://doi.org/10.5552/drind.2013.1309

Gutiérrez, P. H., & De la Vara, S. R. (2012). Análisis y diseño de experimentos (3a ed.). México: Mc Graw Hill.

Hernández, R. E., Passarini, L., & Koubaa, A. (2014). Effects of temperature and moisture content on selected wood mechanical properties involved in the chipping process. Wood Science and Technology, 48(6), 1281-1301. doi: https://doi.org/10.1007/s00226-014-0673-9

International Organization for Standardization. (ISO). (2014). ISO 13061-1:2014. Wood-Determination of moisture content for physical and mechanical tests. ISO Catalog 79 Wood technology; 79.040. Wood, sawlogs and saw timber. Geneva, Switzerland: Author. http://www.iso.org/iso/home/store/catalogue_ics/ catalogue_detail_ics.htm?ics1=79&ics2=040&ics3=&csnumber=60069

Keunecke, D., Sonderegger, W., Pereteanu, K., Lüthi, T., & Niemz, P. (2007). Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Science and Technology, 41(4), 309–327. doi: https://doi.org/10.1007/s00226-006-0107-4

Köhler, J., Sørensen, J. D., & Faber, M. H. (2007). Probabilistic modeling of timber structures. Structural Safety, 29(4), 255–267. doi: https://doi.org/10.1016/j.strusafe.2006.07.007

Kránitz, K., Deublein, M., & Niemz, P. (2014). Determination of dynamic elastic moduli and shear moduli of aged wood by means of ultrasonic devices. Materials and Structures, 47(6), 925–936. doi: https://doi.org/10.1617/s11527-013-0103-8

Mackerle, J. (2005). Finite element analyses in wood research: A bibliography. Wood Science and Technology, 39(7), 579-600. doi: https://doi.org/10.1007/s00226-005-0026-9

Nadir, Y., Nagarajan, P., & Midhun, A. J. (2014). Measuring elastic constants of Hevea brasiliensis using compression and Iosipescu shear test. European Journal of Wood and Wood Products, 72(6), 749-758. doi: https://doi.org/10.1007/s00107-014-0842-4

Naruse, K. (2003). Estimation of shear moduli of wood by quasi-simple shear tests. Journal of Wood Science, 49(6), 479–484. doi: https://doi.org/10.1007/s10086-003-0515-0

Olsson, A., & Källsner, B. (2013). Shear modulus of structural timber evaluated by means of dynamic excitation and FE analysis. Materials and Structures, 48(4), 977-985. doi: https://doi.org/10.1617/s11527-013-0208-0

Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Science and Technology, 47(2), 329-341. doi: https://doi.org/10.1007/s00226-012-0499-2

Sotomayor, C. J. R. (2015). Banco FITECMA de características físico-mecánicas de maderas mexicanas. Morelia, Michoacán, México: Universidad Michoacana de San Nicolás de Hidalgo. doi: https://doi.org/10.13140/RG.2.1.3497.4884

Sotomayor-Castellanos, J. R., Guridi-Gómez, L. I., & García-Moreno, T. (2010). Características acústicas de la madera de 152 especies mexicanas. Velocidad del ultrasonido, módulo de elasticidad, índice material y factor de calidad. Base de datos. Investigación e Ingeniería de la Madera, 6(1), 3-32. https://www.researchgate.net/publication/261064568_Investigacion_e_Ingenieria_de_la_Madera_2010_Vol_6_No_1

Sotomayor-Castellanos, J. R.,& Hernández-Maldonado, S. A. (2012). Características elásticas de maderas mexicanas. Investigación e Ingeniería de la Madera, 8(2), 3-78. http://www.researchgate.net/publication/261064509_Investigacin_e_Ingeniera_de_la_Madera_2012_Vol._8_No._2

Statpoint Technologies, Inc. (2006). Statgraphics® Centurion XV. Warrenton, Virginia, USA: Author.

Tankut, N., Tankut, A. N., & Zor, M. (2014). Finite element analysis of wood materials. Drvna Industrija, 65(2), 159-171. doi: https://doi.org/10.5552/drind.2014.1254

Tiryaki, S., & Hamzaçebi, C. (2014). Predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of heat treated woods by artificial neural networks. Measurement, 49, 266-274. doi: https://doi.org/10.1016/j.measurement.2013.12.004

Yoshihara, H. (2012a). Off-axis Young’s modulus and off-axis shear modulus of wood measured by flexural vibration tests. Holzforschung, 66(2), 207-213. doi: https://doi.org/10.1515/HF.2011.118

Yoshihara, H. (2012b). Shear modulus and shear strength evaluation of solid wood by a modified ISO 15310 square-plate twist method. Drvna Industrija, 63(1), 51-55. doi: https://doi.org/10.5552/drind.2012.1125

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Revista Chapingo Serie Ciencias Forestales y del Ambiente