Revista Chapingo Serie Ciencias Forestales y del Ambiente
Efecto del gradiente altitudinal sobre la variación morfométrica y la simetría foliar de Platanus mexicana Moric
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

Diferenciación foliar
plasticidad fenotípica
grupos foliares
adaptación morfológica

Cómo citar

Galván-Hernández, D. M. ., Lozada-García, J. A. ., Flores-Estévez, N. ., Galindo-González, J., & Vázquez-Torres, S. M. (2015). Efecto del gradiente altitudinal sobre la variación morfométrica y la simetría foliar de Platanus mexicana Moric. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 21(2), 171–183. https://doi.org/10.5154/r.rchscfa.2014.08.034

Resumen

La variación morfométrica y simetría foliar de una población de Platanus mexicana se caracterizaron en un gradiente altitudinal ripario del estado de Veracruz. Ocho caracteres morfométricos se evaluaron en 1,800 hojas provenientes de 15 individuos por sitio (70, 200, 600 y 1,700 m de altitud). Las diferencias morfométricas entre sitios (F(24, 5189) = 21.1, < 0.05) se determinaron con un análisis de funciones discriminantes. Los caracteres relacionados con el largo y ancho de las hojas determinaron diferencias significativas (≤ 0.05) a nivel intrapoblacional. Con base en las distancias de Mahalanobis, el sitio ubicado a 70 m de altitud es el más distante morfométricamente. El análisis de conglomerados mostró 10 grupos foliares diferentes entre sí a lo largo del gradiente altitudinal. Existen diferencias en el tamaño foliar de mayor a menor altitud, indicando que hay hojas más grandes a 70 m. El índice de simetría foliar de P. mexicana no mostró diferencias significativas (> 0.05) entre sitios del gradiente altitudinal del río Colipa. Los resultados fueron útiles para determinar la capacidad de respuesta de P. mexicana ante la heterogeneidad ambiental a lo largo del gradiente altitudinal del río Colipa.

https://doi.org/10.5154/r.rchscfa.2014.08.034
PDF

Citas

Acosta-Hernández, C. C., Luna-Rodríguez, M., Octavio- Aguilar, P., Morales-Romero, Z., Galindo-González, J., Noa-Carrazana, J. C.,…Iglesias-Andreu, L. G. (2011). Efecto del aprovechamiento forestal sobre la variación morfológica de Juglans pyriformis Liebm. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 17(3), 379–388. doi: https://doi.org/10.5154/r.rchscfa.2011.04.033

Alarcón, C. N., & Legaria, S. J. P. (2013). Caracterización morfológica de una muestra etnográfica de jamaica (Hibiscus sabdariffa L.). Revista Chapingo Serie Horticultura, 19(1), 85–98. doi: https://doi.org/10.5154/r.rchsh.2010.03.011

Álvarez, Z. E., Sánchez-González, A., & Granados, S. D. (2009). Análisis de la variación morfológica foliar en Quercus laeta Liebm. en el parque nacional Los Mármoles, Hidalgo, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 15(2), 87–93. http://portal.chapingo.mx/revistas/forestales/contenido.php?id_ articulo=512 &id_revistas=3&id_revista_numero=40

Andrade, I. M., Mayo, S. J., Kirkup, D., & Van den Berg, C. (2008). Comparative morphology of populations of Monstera Adans. (Araceae) from natural forest fragments in Northeast Brazil using elliptic Fourier Analysis of leaf outlines. Kew Bulletin, 63, 193–211. doi: https://doi.org/10.1007/s12225-008-9032-z

Canché-Delgado, A., García-Jain, S. E., Vaca-Sánchez, M. S., & Cuevas-Reyes P. (2011). Cambios en la morfología floral y foliar en Crataegus tracyi: Importancia de la asimetría fluctuante como indicador de estrés ambiental. Biológicas, 13(1), 44–49. http://biologicas.umich.mx/index.php/biologicas/article/view/98

Carvalho, S. R., Luiz, P. J., & Correa, R. X. (2012). Morphological characterization of leaf, flower, fruit and seed traits among Brazilian Theobroma L. species. Genetic Resources and Crop Evolution, 59, 327–345. doi: https://doi.org/10.1007/s10722-011-9685-6

Cavieres, L. A. (2000). Variación morfológica de Phacelia secunda J. F. Gmel. (Hydrophyllaceae) a lo largo de un gradiente altitudinal en Chile central. Gayana Botanica, 57(1), 89–96. doi: https://doi.org/10.4067/S0717-66432000000100007

Depypere, L., Chaerle, P., Breyne, P., Vander, M. K., & Goetghebeur, P. (2009). A combined morphometric and AFLP based diversity study challenges the taxonomy of the European members of the complex Prunus L. section Prunus. Plant Systematics and Evolution, 279, 219– 231. doi doi: https://doi.org/10.1007/s00606-009-0158-8

Ellis, B., Daly, D. C., Hickey, L. J., Johnson, K. R., Mitchell, J. D., Wilf, P., & Wing, S. L. (2009). Manual of leaf architecture. USA: Cornell University Press,

Franiel, I., & Wieski, K. (2005). Leaf features of silver birch (Betula pendula Roth). Variability within and between two populations (uncontaminated vs Pb-contaminated and Zn-contaminated site). Trees, 19, 81–88. doi: https://doi.org/10.1007/s00468-004-0366-3

Galindo, I., Castro, S. & Valdés, M. (1990). Radiación Solar Global, escala 1:16000000. Energía, producción, consumo y recursos potenciales. Atlas Nacional de México. Instituto de Geografía, UNAM, México

García, E. (1996). Isotermas medias anuales, escala 1:1000000. México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO).

Gwali, S., Nakabonge, G., Lamoris, O. J. B., Eilu, G., Nyeko, P., & Vuzi, P. (2012). Morphological variation among shea tree (Vitellaria paradoxa subsp. nilotica) ‘ethnovarieties’ in Uganda. Genetic Resources and Crop Evolution, 59, 1883– 1898. doi: https://doi.org/10.1007/s10722-012-9905-8

Hao, Z., & Xiangrong, W. (2006). Leaf developmental stability of Platanus acerifolia under urban environmental stress and its implication as an environmental indicator. Frontiers of Biology in China, 4, 411–417. doi: https://doi.org/10.1007/s11515-006-0055-2

Iglesias, L. G., Solís-Ramos, L. Y., & Viveros-Viveros, H. (2012). Variación morfométrica en dos poblaciones naturales de Pinus hartwegii Lindl. del estado de Veracruz. Revista Internacional de Botánica Experimental, 81, 239–246. http://www.scielo.org.ar/pdf/phyton/v81n2/v81n2a17.pdf

Körner, C. (2007). The use of altitude in ecological research. Trends in Ecology and Evolution, 22(11), 569–574. doi: https://doi.org/10.1016/j.tree.2007.09.006

Lorenzo, N., Mantuano, D. G., & Mantovani, A. (2010). Comparative leaf ecophysiology and anatomy of seedling, young and adult individuals of the epiphytic aroid Anthurium scandens (Aubl.) Engl. Environmental and Experimental Botany, 68(3), 314–322. doi: https://doi.org/10.1016/j.envexpbot.2009.11.011

Luo, J., Zang, R., & Li, C. (2006). Physiological and morphological variations of Picea asperata populations originating from different altitudes in the mountains of southwestern China. Forest Ecology and Management, 221(1-3), 285–290. doi: https://doi.org/10.1016/j.foreco.2005.10.004

Moller, A. P., & Shykoff, P. (1999). Morphological developmental stability in plants: Patterns and causes. International Journal of Plant Science, 160, 135–146. doi: https://doi.org/10.1086/314219

Maderey-Rascón, L. E. (1990). Evapotranspiración real, escala 1:4000000. Atlas Nacional de México. Instituto de Geografía, UNAM, México

Nee, M. (1981). Platanaceae. En Instituto Nacional de Investigaciones sobre Recursos Bióticos (Ed.), Flora de Veracruz Fasciculo 19. Xalapa, Veracruz, México: Autor

Palmer, A. R., & Strobeck, C. (1997). Fluctuating asymmetry and developmental stability: Heritability of observable variation vs. heritability of inferred cause. Journal of Evolutionary Biology, 10(1), 39–49. doi doi: https://doi.org/10.1046/j.1420-9101.1997.10010039.x

Richards, P. W. (1996). The tropical rain forest at its altitudinal and latitudinal limits. In Cambridge University Press (Ed.), The tropical rain forest: An ecological study (419–454 pp). USA: Cambridge University Press. http://www.cambridge.org/us/academic/subjects/lifesciences/plant-science/tropical-rain-forest-ecologicalstudy-2nd-edition#contentsTabAnchor

Sattarian, A., Reza, A. M., Zarafshar, M., Bruschi, P., & Fayyaz, P. (2011). Phenotypic variation and leaf fluctuating asymmetry in natural populations of Parrotia persica (Hamamelidaceae), an endemic species from the Hyrcanian forest (Iran). Acta Botanica Mexicana, 97, 65–81. http://www.redalyc.org/pdf/574/57421427009.pdf

StatSoft, Inc. (2011). STATISTICA (data analysis software system). Version 8.0. USA. Obtenido http://www.statsoft.com

Uribe-Salas, D., Sáenz-Romero, C., González-Rodríguez, A., Téllez-Valdéz, O., & Oyama, K. (2008). Foliar morphological variation in the White oak Quercus rugosa Neé (Fagaceae) along a latitudinal gradient in Mexico: Potential implications for management and conservation. Forest Ecology and Management, 256(12), 2121–2126. doi: https://doi.org/10.1016/j.foreco.2008.08.002

Vidal-Zepeda, R. (1990). Precipitación media anual, escala 1:4000000. Atlas Nacional de México. Instituto de Geografía, UNAM, México

Ward, J. V., Tockner, K., Arscott, D. B., & Claret, C. (2002). Riverine landscape diversity. Freshwater Biology, 47(4), 517–539. doi: https://doi.org/10.1046/j.1365-2427.2002.00893.x

Watkins, J. E., Cardelu, C., Colwell, R. K., & Moran, R. C. (2006). Species richness and distribution of ferns along an elevational gradient in Costa Rica. American Journal of Botany, 93(1), 73–83. doi: https://doi.org/10.3732/ajb.93.1.73

Xu, F., Guo, W., Xu, G., & Wang, R. (2008). Habitat effects on leaf morphological plasticity in Quercus acutissima. Acta Biologica Cracoviensia, 50(2), 19–26. http://www2.ib.uj.edu.pl/abc/pdf/50_2/019-026-XU.pdf

Xu, F., Guo, W., Xu, W., Wei, Y., & Wang, R. (2009). Leaf morphology correlates with water and light availability: What consequences for simple and compound leaves? Progress in Natural Science, 19(12), 1789–1798. doi: https://doi.org/10.1016/j.pnsc.2009.10.001

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2015 Revista Chapingo Serie Ciencias Forestales y del Ambiente