Revista Chapingo Serie Ciencias Forestales y del Ambiente
Bioprospecting arsenite oxidizing bacteria in the soil of the Comarca Lagunera
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Arsenite oxidase
chemolithoautotrophic
chemoheterotrophic
bioremediation

How to Cite

Rangel-Montoya, E. A. ., & Balagurusamy, N. . (2015). Bioprospecting arsenite oxidizing bacteria in the soil of the Comarca Lagunera. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 21(1), 41–56. https://doi.org/10.5154/r.rchscfa.2014.05.024

Abstract

Arsenic is one of the most toxic metalloids present in the environment and prolonged exposure to this metal causes chronic health effects. Therefore, the search for environmentally-friendly alternatives for the treatment of arsenic-contaminated water and soil is important. In this study, bacterial strains were isolated from arseniccontaining soils in the Lagunera region to analyze those with arsenite-oxidizing abiliity. Strains 04-SP1qa and 14-SP1qh with chemolithoautotrophic and chemoheterotrophic metabolism, respectively, had greater activity of the arsenite oxidase enzyme. The optimum growth conditions and enzymatic activity of these strains were investigated. Strain 04-SP1qa had specific enzymatic activity of 0.162 μmol·min-1·mg-1, Michaelis-Menten constant (Km) of 3.37 μM and maximum velocity (Vmax) of 5.2 μM·min-1·mg-1 under optimum growth conditions of pH 8.0 at 40 °C. Strain 14-SP1qh showed specific enzymatic activity of 0.16 μmol·min-1·mg-1, Km of 3.7 μM and Vmax of 14.39 μM·min-1·mg-1 at pH 7.0 and 40 °C. Results of this study demonstrated the presence of arsenite- oxidizing bacteria with enzymatic activity in the soils of the Lagunera region. Thus, the potential exists to develop new bioremediation technologies for treatment of arsenic-contaminated water and soils in the region using native bacterial strains.

https://doi.org/10.5154/r.rchscfa.2014.05.024
PDF

References

Anawar, H., Akai, J., Komaki, K., Terao, H., Yosioka, T., Ishizuka, T., Safiullah, S., & Kikuo, K. (2003). Geochemical occurrence of arsenic in the groundwater of Bangladesh sources and mobilization processes. Journal of Geochemical Exploration, 77(2-3), 109–131. doi: https://doi.org/10.1016/S0375-6742(02)00273-X

Anderson, G., Williams, J., & Hille, R. (1992). The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. Journal of Biological Chemistry, 267(33), 23674–23682. http://www.jbc.org/content/267/33/23674.full.pdf+html

Braford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254. doi: https://doi.org/10.1016/0003-2697(76)90527-3

Campos, V., Valenzuela, C., Alcorta, M., Escalante, G., & Mondaca, M. (2007). Isolation of arsenic resistance bacteria from volcanic rocks of Quebrada Camarones, Parina Region, Chile. Gayana, 71(2), 150–155. doi: https://doi.org/10.4067/S0717-65382007000200003

Cebrián, M. E., Albores, A., García-Vargas, G., & Del Razo, L. M. (1994). Chronic arsenic poisoning in humans: The case of Mexico. In J. O. Nriagu (Ed.), Arsenic in the environment, Part II: Human health and ecosystem effects (pp. 93–107). USA: John Wiley & Sons, Inc.

Del Razo, L., Hernández, J., García-Vargas, G., Ostrosky-Wegman, P., Cortinas de Nava, C., & Cebrián, M. (1994). Urinary excretion of arsenic species in a human population chronically exposed to arsenic via drinking water. A pilot study. In C. O. Abernathy, W. R. Chappell, & C. R. Cothern (Eds.), Arsenic. Exposure and health (pp. 91–100). Norwood, UK: Science and Technology Letters.

Ellis, P., Conrads, T., Hille, R., & Kuhn, P. (2001). Crystal structure of the 100 kDa Arsenite Oxidase from Alcaligenes faecalis in two crystal forms at 1.64 Å and 2.03 Å. Structure, 9(2), 125–132. doi: https://doi.org/10.1016/S0969-2126(01)00566-4

Ghurye, G., & Clifford, D. (2001). Laboratory study on the oxidation of As (III) to As (V). Houston, TX: U. S Environmental Protection Agency.

Green, H. H. (1918). Description of a bacterium which oxidizes arsenite to arsenate, and of one which reduces arsenate to arsenite, isolated from a cattle-dipping tank. South African Journal of Science, 14, 465–467.

Lebrun, E., Brunga, M., Baymann, F., Muller, D., Lievremont, D., Lett M-C., & Nitschke, W. (2003). Arsenite Oxidase, an ancient bioenergetic enzyme. Molecular Biology and Evolution, 20(5), 686–693. doi: https://doi.org/10.1093/molbev/msg071

Lett, M-C., Muller, D., Lièvremont, D., Silver, S., & Santini, J. (2012). Unified nomenclature for genes involved in Prokaryotic aerobic arsenite oxidation. Journal of Bacteriology, 194(2), 207–208. doi: https://doi.org/10.1128/JB.06391-11

Prasad, K., Subramanian, V., & Paul, J. (2009). Purification and characterization of arsenite oxidase from Arthrobacter sp. Biometals, 22(5), 711–721. doi: https://doi.org/10.1007/s10534-009-9215-6

Rosas, I., Belmont, R., Armienta, A., & Baez, A. (1999). Arsenic concentrations in water, soil, milk and forage in Comarca Lagunera, Mexico. Water, Air, and Soil Pollution, 112(2), 133–149. doi: https://doi.org/10.1023/A:1005095900193

Santini, J., Sly, L., Schnagl, R., & Macy, J. (2000). A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: Phylogenetic, physiological, and preliminary biochemical studies. Applied and Environmental Microbiology, 66(1), 92–97. doi: https://doi.org/10.1128/AEM.66.1.92-97.2000

SICYGSA. (2000). Estudio de la contaminación difusa del acuífero de la Comarca Lagunera, Coahuila. México, D. F.: Subdirección General Técnica, Gerencia de Aguas Subterráneas, CONAGUA.

Silver, S., & Phung, L. (2005). Genes and enzymes involved in bacterial oxidation reduction of inorganic arsenic. Applied and Environmental Microbiology, 71(2), 599–608. doi: https://doi.org/10.1128/AEM.71.2.599-608.2005

Simeonova, D., Liévremont, D., Lagarde, F., Muller, D., Groudeva, V., & Lett, M-C. (2004). Microplate screening assay for the detection of arsenite-oxidizing and arsenate-reducing bacteria. FEMS Microbiology Letters, 237, 249–253. doi: https://doi.org/10.1111/j.1574-6968.2004.tb09703.x

Statgraphics (1992). Statgraphics Plus, version 5.1. Reference Manual, Manugistics. Rockville, MD: Statpoint Technologies, Inc. http://www.statgraphics.com/statgraphics_plus.htm

Tsai, S., Singh, S., & Chen, W. (2009). Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Chemical Biotechnology, 20(6), 659–667. doi: https://doi.org/10.1016/j.copbio.2009.09.013

Valenzuela, C., Campos, V., Yañez, E., Zarror, C., & Mondaca, M. (2009). Isolation of arsenite-oxidizing bacteria from arsenic-enriched sediments from Camarones River, Northern Chile. Bulletin of Environmental Contamination and Toxicology, 82(5), 593–596. doi: https://doi.org/10.1007/s00128-009-9659-y

Van Lis, R., Nitschke, W., Warelow, T., Capowiez, L., Santini, J., & Schoepp-Cothenet, B. (2012). Heterologously expressed arsenite oxidase: A system to study biogenesis and structure/function relationships of the enzyme family. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(9), 1701–1708. doi: https://doi.org/10.1016/j.bbabio.2012.06.001

Vanden Hoven, R., & Santini J. (2004). Arsenite oxidation by the heterotrophy Hydrogenophaga sp. str. NT-14: The arsenite oxidase and its physiological electron acceptor. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1656(2), 148–155. doi: https://doi.org/10.1016/j.bbabio.2004.03.001

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 Revista Chapingo Serie Ciencias Forestales y del Ambiente