Revista Chapingo Serie Ciencias Forestales y del Ambiente
MOISTURE AND INORGANIC SUBSTANCE CONTENT IN PINE TIMBER PRODUCTS FOR USE IN PELLETS AND BRIQUETTES
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Sawdust
shavings
inorganic elements
solid biofuels
bioenergy

How to Cite

Correa-Méndez, F. ., Carrillo-Parra, A. ., Rutiaga-Quiñones, J. G., Márquez-Montesino, F. ., González-Rodríguez, H. ., Jurado-Ybarra, E. ., & Garza-Ocañas, F. . (2014). MOISTURE AND INORGANIC SUBSTANCE CONTENT IN PINE TIMBER PRODUCTS FOR USE IN PELLETS AND BRIQUETTES. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 20(1), 77–88. https://doi.org/10.5154/r.rchscfa.2013.04.012

Abstract

The forest industry in the municipal seat of Nuevo San Juan Parangaricutiro and the Indigenous Community of Nuevo San Juan Parangaricutiro, located in Michoacán state, Mexico, generates 1,232 m3·year-1 of underutilized pine sawdust and shavings. The sawdust and shavings of Pinus leiophylla Sch. Et Cham., P. montezumae Lamb. and P. pseudostrobus Lindl were subjected to physicochemical analyzes to determine if they meet the requirements for pellet and briquette production. The moisture, ash, and inorganic element contents in the byproducts were determined using international standards. Moisture content in ash was 51.5 ± 1.9 %, and 53.7 ± 0.1 % in shavings; these values exceeded the maximum allowable. Ash content in sawdust and shavings was 0.26 ± 0.03 % and 0.34 ± 0.03 %, respectively. For the three species evaluated, the average percentage of calcium, potassium, magnesium, phosphorus, sulfur, silicon, iron, aluminum and sodium in sawdust was 47.1 ± 2.8, 26.0 ± 2.5, 13.5 ± 0.4, 5.0 ± 0.4, 3.2 ± 0.4, 2.3 ± 0.8, 1.0 ± 0.1, 1.3 ± 0.4 and 1.4 ± 0.3, respectively, while the average percentage was 43.2 ± 7.0, 16.5 ± 3.0, 10.1 ± 4.8, 4.0 ± 0.6, 1.8 ± 0.2, 3.6 ± 0.3, 1.0 ± 0.6, 1.1 ± 0.1 and 1.0 ± 0.6 in shavings, respectively. Arsenic was only found in the shavings (17.1 ± 17.1). Based on the results, sawdust is the most suitable byproduct for pellet and briquette production.

https://doi.org/10.5154/r.rchscfa.2013.04.012
PDF

References

Agencia para Sustancias Tóxicas y el Registro de Enfermedades (ATSDR). (2007). Reseña toxicológica del arsénico. Atlanta, GA, EE. UU.: Departamento de Salud y Servicios Humanos de los EE. UU., Servicio de Salud Pública. http://www.atsdr.cdc.gov/es/toxfaqs/es_tfacts2.pdf

Bahng, M. K., Mukarakate, C., Robichaud, D. J., & Nimlos, M. R. (2009). Current technologies for analysis of biomass thermochemical processing: A review. Analytica Chimica Acta, 651(2), 117–138. doi: https://doi.org/10.1016/j.aca.2009.08.016

Campbell, A. G. (1990). Recycling and disposing of wood ash. TAPPI Journal, 73(9), 141–146.

De la Torre, E. Y. (2012). Los volcanes del Sistema Volcánico Transversal. Investigaciones Geográficas, Boletín del Instituto de Geografía, 50, 220–234. http://www.scielo.org.mx/pdf/igeo/n50/n50a18.pdf

Fengel, D., & Wegener, G. (1984). Wood chemistry, ultrastructure, reactions. Germany: Walter de Gruyter.

García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2012). Characterization of Spanish biomass wastes for energy use. Bioresource Technology, 103(1), 249–258. doi: https://doi.org/10.1016/j.biortech.2011.10.004

Granifo, R. A. (2009). Recuperación de los residuos de la madera para uso energético en la región metropolitana. Tesis, Universidad Andrés Bello, Santiago, Chile. http://www.chileresiduos.cl/chileresiduos/userfiles/file/tesis%20granifo%20residuos%20madera%281%29.pdf

Khan, B. I., Solo-Gabriele, H. M., Dubey, B. K., Townsend, T. G., & Cai, Y. (2004). Arsenic speciation of solvent-extracted leachate from new and weathered CCA-Treated wood. Environmental Science & Technology, 38(17), 4527–4534. doi: https://doi.org/10.1021/es049598r

Kuang, Y., Zhou, G., Wen, D., & Liu, S. (2007). Heavy metals in bark of Pinus massoniana (Lamb.) as an indicator of atmospheric deposition near a smeltery at Qujiang, China. Environmental Science and Pollution Research International, 14(4), 270–275. doi: https://doi.org/10.1065/espr2006.09.344

Lambert, M. J. (1981). Inorganic constituents in wood and bark of New South Wales forest tree species. Sydney, Australia: Forestry Commission of New South Wales.

Liu, X., & Bi, X. T. (2011). Removal of inorganic constituents from pine barks and switchgrass. Fuel Processing Technology, 92(7), 1273–1279. doi: https://doi.org/10.1016/j.fuproc.2011.01.016

Minitab Inc. (2010). Minitab statistical software. Minitab Release, 16.2.1. USA: Autor.

Miranda, M. T., Arranz, J. I., Rojas, S., & Montero, I. (2009). Energetic characterization of densified residues from Pyrenean oak forest. Fuel, 88(11), 2106–2112. doi: https://doi.org/10.1016/j.fuel.2009.05.015

Obernberger, I., & Thek, G. (2004). Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass and Bioenergy, 27(6), 653–669. doi: https://doi.org/10.1016/j.biombioe.2003.07.006

Obernberger, I., & Thek, G. (2010). The pellet handbook (1st ed.). London-Washington DC: Earthscan.

ÖNORM M 7135 (2000). Compressed wood or compressed bark in natural state-pellets and briquettes, requirements and test specifications. Vienna, Austria: Osterreichisches Normungsinstitut.

Revilla, G., E. (2011). Química de la madera de cuatro pinos mexicanos de la subsección Cembroides. Tesis, Universidad Autónoma Chapingo, Chapingo, Texcoco, Edo. de México, México.

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591– 611. http://sci2s.ugr.es/keel/pdf/algorithm/articulo/shapiro1965.pdf

SPSS (2009). PASW Statistics 18. Chicago, IL, USA: Autor.

Téllez, C., Ochoa, H. G., Sanjuan, R., & Rutiaga, J. G. (2010). Componentes químicos del duramen de Andira inermis (W. Wright) DC.(Leguminosae). Revista Chapingo Serie Ciencias Forestales y del Ambiente, 16(1), 87–93. doi: https://doi.org/10.5154/r.rchscfa.2099.11.046

UNE-EN 14774. (2010). Biocombustibles sólidos. Determinación del contenido de humedad. Método de secado en estufa. Parte 3. Humedad de la muestra para análisis general. Madrid, España: Asociación Española de Normalización y Certificación.

UNE-EN 14775. (2010). Biocombustibles sólidos. Método para la determinación del contenido en cenizas. Madrid, España: Asociación Española de Normalización y Certificación.

Van Lith, S. C., Alonso, V., Jensen, P. A., Frandsen, F. J., & Glarborg, P. (2006). Release to the gas phase of inorganic elements during wood combustion. Part 1: Development and evaluation of quantification methods. Energy & Fuels, 20(3), 964–978. doi: https://doi.org/10.1021/ef050131r

Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913-933. doi: https://doi.org/10.1016/j.fuel.2009.10.022

Vassilev, S. V., Baxter, D., Andersen, L. K., Vassileva, C. G., & Morgan, T. J. (2012). An overview of the organic and inorganic phase composition of biomass. Fuel, 94, 1–33. doi: https://doi.org/10.1016/j.fuel.2011.09.030

Werkelin, J., Lindberg, D., Boström, D., Skrifvars, B. J., & Hupa, M. (2011). Ash-forming elements in four Scandinavian wood species part 3: Combustion of five spruce samples. Biomass and Bioenergy, 35, 725–733. doi: https://doi.org/10.1016/j.biombioe.2010.10.010

Werkelin, J., Skrifvars, B. J., Zevenhoven, M., Holmbom, B., & Hupa, M. (2010). Chemical forms of ash-forming elements in woody biomass fuels. Fuel, 89(2), 481–493. doi: https://doi.org/10.1016/j.fuel.2009.09.005

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2014 Revista Chapingo Serie Ciencias Forestales y del Ambiente