Revista Chapingo Serie Ciencias Forestales y del Ambiente
LA RELACIÓN ENTRE LOS CARBOHIDRATOS Y LA VITALIDAD EN ÁRBOLES URBANOS
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

Azúcar
arboricultura
salud
tronco

Cómo citar

Martínez-Trinidad, T. ., Plascencia-Escalante, F. O. ., & Islas-Rodríguez, L. . (2013). LA RELACIÓN ENTRE LOS CARBOHIDRATOS Y LA VITALIDAD EN ÁRBOLES URBANOS. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 19(3), 459–468. https://doi.org/10.5154/r.rchscfa.2012.03.016

##article.highlights##

  • Los carbohidratos son la principal fuente de energía de los árboles urbanos
  • Un alto contenido en almidón es importante para hacer frente a las condiciones de estrés del árbol
  • La vitalidad del árbol puede estar asociada al contenido en carbohidratos

Resumen

La concentración de carbohidratos, producto de la fotosíntesis, varía de acuerdo con las condiciones ambientales y las etapas fenológicas de los árboles urbanos. Como la distribución de azúcares es controlada por las relaciones fuente-demanda, la reserva de carbohidratos se vuelve una parte fundamental para afrontar las condiciones de estrés. Algunas investigaciones en Inglaterra y Estados Unidos han demostrado que la aplicación de azúcares al suelo mejora la vitalidad del arbolado urbano; sin embargo, se debe considerar el uso de éstos por los microorganismos. Por lo anterior, la inyección de azúcares al tronco se propone como un método alternativo. La vitalidad de los árboles se determina con base en diferentes variables como el crecimiento, la concentración de carbohidratos y la fluorescencia de clorofila. El trabajo integra información que describe la relación de los azúcares con la vitalidad del arbolado urbano.

https://doi.org/10.5154/r.rchscfa.2012.03.016
PDF

Citas

Abod, S. A., & Webster, A. D. (1991). Carbohydrates and their effects on growth and establishment of Tilia and Betula: I. Seasonal changes in soluble and insoluble carbohydrates. Journal of Horticultural Sciences, 66, 235–246.

Alaoui-Sosse, B., Parmentier, C., Dizengremel, P., & Barnola, P. (1994). Rhythmic growth and carbon allocation in Quercus rubur. 1. Starch and sucrose. Plant Physiology and Biochemistry, 32, 331–339.

Allen, M. T., Prusinkiewicz, P., & DeJong, T. M. (2005). Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: The L-PEACH model. New Phytologyst, 166, 869–880. doi: https://doi.org/10.1111/j.1469-8137.2005.01348.x

Appel, D. N. (2001). The use of Alamo for oak wilt management. In C. L. R. Ash (Ed.), Shade tree wilt diseases (pp. 101–106). USA: APS Press.

Barbaroux, C., Breda, N., & Dufrene, E. (2003). Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petrea and Fagus sylvatica). New Phytologyst, 157, 605–615. doi: https://doi.org/10.1046/j.1469-8137.2003.00681.x

Beniwal, R. S., & Hooda, M. S. (2011). Amelioration of planting stress by soil amendment with hidrogel mycorrhiza mixture for early establisment of beech (Fagus sylvatica L.) seedlings. Annals of Forest Science, 68, 803–810. doi: https://doi.org/10.1007/s13595-011-0077-z

Bloem, J., De Ruiter, P., & Bouwman, L. (1997). Soil food webs and nutrient cycling in agroecosystems. In J. D. Van Elsas, J. T. Trevors, & E. M. H. Wellington (Eds.), Modern soil microbiology (pp. 245–278). New York, USA: Marcel Dekker Inc.

Carroll, J. E., Tattar, T. A., & Wargo, P. M. (1983). Relationship of root starch to decline of sugar maple. Plant Disease, 67, 1347– 1349. http://www.apsnet.org/publications/plantdisease/BackIssues/Documents/1983Articles/PlantDisease67n12_1347.PDF

Costonis, A. C. (1981). Tree injections: Perspective macro-injection/micro-injection. Journal of Arboriculture, 7, 275–277. http://www.protectyouroaks.com/Micro-Macro.pdf

Dobbertin, M. (2005). Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. European Journal of Forest Research, 124, 319–333. doi: https://doi.org/10.1007/s10342-005-0085-3

Domisch, T., Finér, L., & Lehto, T. (2002). Growth, carbohydrate and nutrient allocation of Scots pine seedlings after exposure to simulated low soil temperature in spring. Plant Soil, 246, 75–86. doi: https://doi.org/10.1023/a:1021527716616

Giedraitis, J. (1990). Treating the treaty oak. In P. D. Rodbell (Ed.), Make our cities safe for trees (pp. 159–163). USA: The American Forestry Association.

Gregory, R. A., & Wargo, P. M. (1985). Timing of defoliation and its effect on bud development, starch reserves, and sap sugar concentration in sugar maple. Canadian Journal of Forest Research, 16, 10–17. doi: https://doi.org/10.1139/B07-109

Grulke, N. E., Andersen, C. P., & Hogsett, W. E. (2001). Seasonal changes in above-and belowground carbohydrate concentrations of ponderosa pine along a pollution gradient. Tree Physiology, 21, 173–181. http://treephys.oxfordjournals.org/content/21/2-3/173.full.pdf

Haissig, B. E., & Dickson, R. E. (1979). Starch measurement in plant tissue using enzymatic hydrolysis. Physiologia Plantarum, 47, 151–157. doi: https://doi.org/10.1111/j.1399-3054.1979.tb03207.x

Harris, R. W., Clark, J. R., & Matheny, N. P. (2004). Arboriculture: Integrated management of landscape trees, shrubs, and vines. Upper Saddle River, NJ, USA: Prentice Hall.

Iglesias, D. J., Tadeo, F. R., Legarz, F., Primo-Millo, E., & Talon, M. (2001). In vivo sucrose stimulation of colour change in citrus fruit epicarps: Interactions between nutritional and hormonal signals. Physiologia Plantarum, 112, 244–250. doi: https://doi.org/10.1034/j.1399-3054.2001.1120213.x

Illeris, L., & Jonasson, S. (1999). Soil and plant CO2 emission in response to variations in soil moisture and temperature and to amendment with nitrogen, phosphorus, and carbon in Northern Scandinavia. Arctic, Antarctic and Alpine Research, 31, 264–271. http://www.jstor.org/stable/1552256

Jonasson, S., Vestergaard, P., Jensen, M., & Michelsen, A. (1996). Effects of carbohydrate amendments on nutrient partitioning, plant and microbial performance of a grassland-shrub ecosystem. Oikos, 75, 220–226. http://www.jstor.org/stable/3546245

Kaelke, C. M., & Dawson, J. O. (2005). The accretion of nonstructural carbohydrates changes seasonally in Alnusincana ssp. rugosa in accord with tissue type, growth, N allocation, and root hypoxia. Symbiosis, 39, 61–66.

Kaipiainen, L. K., & Sofronova, G. I. (2003). The role of the transport system in the control of the source-sink relations in Pinus sylvestris. Russian Journal of Plant Physiology, 50, 125–132. doi: https://doi.org/10.1023/A:1021909106666

Karolewski, P., Zadworny, M., Mucha, J., Napierala-Filipiak, A., & Oleksyn, J. (2010). Link between defoliation and light treatments on root vitality of five understory shrubs with different resistance to insect hervibory. Tree Physiology, 30, 969–978. doi: https://doi.org/10.1093/treephys/tpq060

Kolosa, K. R., Dickmann, D. I., Paul, E. A., & Parry, D. (2001). Repeated insect defoliation effects on growth, nitrogen acquisition, carbohydrates, and root demography of poplars. Oecologia, 129, 65–74. doi: https://doi.org/10.1007/s004420100694

Larcher, W. (1980). Physiological plant ecology (2nd ed.). New York, USA: Springler-Verlag.

Levitt, J. (1980). Responses of plants to environmental stress. New York, USA: Academic Press.

Lilly, S. J. (2001). Arborists’ certification study guide. Champaign, IL, USA: International Society of Arboriculture.

Ludovici, K. H., Allen, H. L., Albaugh, T. J., & Dougherty, P. M. (2002). The influence of nutrient and water availability on carbohydrate storage in loblolly pine. Forest Ecology and Management, 159(3), 261–270. doi: https://doi.org/10.1016/S0378-1127(01)00439-X

Martínez-Trinidad, T., Watson, W. T., Arnold, M. A., & Lombardini, L. (2009a). Investigations of exogenous applications of carbohydrates on the growth and vitality of live oaks. Urban Forestry & Urban Greening, 8, 41–48. doi: https://doi.org/10.1016/j.ufug.2008.11.003

Martínez-Trinidad, T., Watson, W. T., Arnold, M. A., Lombardini, L., & Appel, D. N. (2009b). Carbohydrate injections as a potential option to improve growth and vitality of live oaks. Arboriculture & Urban Forestry, 35, 142–147. http://auf.isa-arbor.com/request.asp?JournalID=1&ArticleID=3101&Type=2

Martínez-Trinidad, T., Watson, W. T., Arnold, M. A., Lombardini, L., & Appel, D. N. (2010). Comparing various techniques to measure tree vitality on live oaks. Urban Forestry & Urban greening, 9, 199–203. doi: https://doi.org/10.1016/j.ufug.2010.02.003

Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence a practical guide. Journal of Experimental Botany, 51, 659–668. http://jxb.oxfordjournals.org/content/51/345/659.full

McCullough, D. G., & Wagner, M. R. (1987). Evaluation of four techniques to assess vigor of water-stressed ponderosa pine. Canadian Journal of Forest Research, 17, 138–145. doi: https://doi.org/10.1139/x87-025

McLaughlin, S. B., McConathy, R. K., Barnes, R. L., Edwards, W. T. (1980). Seasonal changes in energy allocation by white oak (Quercus alba). Canadian Journal of Forest Research, 10, 379–388. doi: https://doi.org/10.1139/x80-063

Michelsen, A., Graglia, E., Schmidt, I. K., Jonasson, S., Sleep, D., & Quarmby, C. (1999). Differential responses of grass and dwarf shrub to long-term changes in soil microbial C, N and P following factorial addition of NPK fertilizer, fungicide and labile carbon to a heath. New Phytologist, 143, 523–538. doi: https://doi.org/10.1046/j.1469-8137.1999.00479.x

Nelson, D. L., & Cox, M. M. (2005). Lehninger principles of biochemistry. New York, USA: W. H. Freeman and Co.

Pallardy, S. G. (2008). Physiology of woody plants (3rd ed.). New York, USA: Academic Press.

Percival, G. C., Barrow, I., Noviss, K., Keary, I., & Pennington, P. (2011). The impact of horse chestnut leaf miner (Cameraria ohridella Deschka and Dimic; HCLM) on vitality, growth and reproduction of Aesculus hippocastanum L. Urban Forestry & Urban Greening, 16, 11–17. doi: https://doi.org/10.1016/j.ufug.2010.11.003

Percival, G. C., & Fraser, G. A. (2005). Use of sugars to improve root growth and increase transplant success of birch (Betula pendula Roth). Journal of Arboriculture, 31, 66–77. http://www.barcham.co.uk/sites/default/files/Percival_and_Fraser_Journal_of_Arboriculture_2005.pdf

Percival, G. C., Fraser, G. A., & Barnes, S. (2004). Soil injections of carbohydrates improve fine root growth of established urban trees. Arboricultural Journal, 28(1-2), 95–101. doi: https://doi.org/10.1080/03071375.2004.9747404

Percival, G. C., & Smiley, T. E. (2002). One lump or two. Grounds Maintenance, 37, 18–20.

Polak, T., Rock, B. N., Campbell, P. E., Soukupova, J., Solcova, B., Zvara, K., & Alberchtova, J. (2006). Shoot growth processes, assessed by bud development types, reflect Norway spruce vitality and sink prioritization. Forest Ecology and Management, 225, 337–348. doi: https://doi.org/10.1016/j.foreco.2006.01.027

Renaud, J. P., & Mauffette, Y. (1991). The relationship of crown dieback with carbohydrate content and growth of sugar maple (Acer saccharum). Canadian Journal of Forest Research, 21, 1111–1118.

Renaud, J. P., & Mauffette, Y. (1991). The relationship of crown dieback with carbohydrate content and growth of sugar maple (Acer saccharum). Canadian Journal of Forest Research, 21, 1111–1118. doi: https://doi.org/10.1139/cjfr-31-6-960

Sachs, R. M., Nyland, G., Hackett, W. P., Coffelt, J., Debie, J., & Gianinni, G. (1977). Pressurized injection of aqueous solutions into tree trunks. Scientia Horticulturae, 6(4), 297–310. doi: https://doi.org/10.1016/0304-4238(77)90087-5

Sánchez, Z., & Fernández, E. R., (2004). Uptake and distribution of trunk injections in conifers. Journal of Arboriculture, 30(2), 73–79. http://auf.isa-arbor.com/request.asp?JournalID=1&ArticleID=128&Type=2

Schmidt, I. K., Ruess, L., Bääth, E., Michelsen, A., Ekelund, F., & Jonasson, S. (2000). Long-term manipulation of the microbes and microfauna of two subarctic heaths by addition of fungicide, bactericide, carbon and fertilizer. Soil Biology and Biochemisty, 32, 707–720. doi: https://doi.org/10.1016/S0038-0717(99)00207-2

Shigo, A. L., & Shortle, W. C. (1985). Shigometry: A reference guide. USA: USDA Forest Service.

Stanzel, M., Sjolund, R. D., & Komor, E. (1988). Transport of glucose, fructose and sucrose by Streptanthus tortuosus suspension cells. Planta, 174, 201–209. doi: https://doi.org/10.1007/BF00394773

Stubbs, V. E. C., Standing, D. L, Knox, O. G. G., Kilham, K., Bengough, A. G., & Griffiths, B. (2004). Root border cells take up and release glucose-C. Annals of Botany, 93, 221– 224. doi: https://doi.org/10.1093/aob/mch019

Taiz, L., & Zeiger, E. (2006). Plant physiology (4th ed.). Sunderland, MA, USA: Sinauer Associates Inc.

Tattar, T. A., & Tattar, S. J. (1999). Evidence for the downward movement of materials injected into trees. Journal of Arboriculture, 25, 325–328. http://auf.isa-arbor.com/request.asp?JournalID=1&ArticleID=2870&Type=2

Waes, C. V., Baert, J., Carlier, L., & Bockstaele, E. V. (1998). A rapid determination of total sugar content and the average inulin change length in roots of chicory (Cichorium intybus L.). Journal of the Science of Food and Agriculture, 76, 107–110.

Wagner, G. H., & Wolf, D. C. (2005). Carbon transformation and soil organic matter formation. In D. M. Sylvia, J. J. Fuhrmann, P. G. Hartel, & D. A. Zuberer (Eds.), Principles and applications of soil microbiology (pp. 219–258). Englewood Cliffs, NJ, USA: Pearson Prentice Hall.

Wargo, P. M. (1975). Estimating starch content in roots of deciduous trees- a visual technique. Upper Darby, PA, USA: U.S. Forest Service.

Wargo, P. M., Minocha, R., Wong, B. L., Long, R. P., Horsley, S. B., & Hall, T. J. (2002). Measuring changes in stress and vitality indicators in limed sugar maple on the Allegheny Plateau in North-Central Pennsylvania. Canadian Journal of Forest Research, 32, 629–641. doi: https://doi.org/10.1139/X02-008

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2013 Revista Chapingo Serie Ciencias Forestales y del Ambiente