Revista Chapingo Serie Ciencias Forestales y del Ambiente
SALES SOLUBLES Y METALES PESADOS EN SUELOS TRATADOS CON BIOSÓLIDOS
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

Contaminación
degradación
plantas de tratamiento de aguas residuales

Cómo citar

Robledo-Santoyo, E. ., Espinosa-Hernández, V. ., Maldonado-Torres, R. ., Rubiños-Panta, J. E. ., Hernández-Acosta, E. ., Ojeda-Trejo, E. ., & Corlay-Chee, L. . (2010). SALES SOLUBLES Y METALES PESADOS EN SUELOS TRATADOS CON BIOSÓLIDOS. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 16(2), 241–252. https://doi.org/10.5154/r.rchscfa.2010.04.021

Resumen

Las plantas de tratamientos de aguas residuales (PTAR) generan diariamente toneladas de lodos (biosólidos), los cuales pueden tener un uso agrícola como fuente de nutrientes y material mejorador del suelo, aunque también pueden ser fuente de contaminación por metales pesados y sales solubles. En este estudio se evaluó, en un suelo representativo de la zona de influencia de la PTAR de la ciudad de Aguascalientes, México, la aplicación de biosólidos y el efecto de su contenido de metales pesados y sales solubles en el suelo y plantas de pasto ballico, con la finalidad de establecer su aprovechamiento agrícola sin riesgo potencial de degradación y contaminación de suelos y plantas. Se hizo una caracterización química de los biosólidos y los suelos estudiados. Los biosólidos presentaron pH ligeramente ácido, alto contenido en sales solubles y concentración de metales pesados dentro de los límites máximos permisibles según la NOM-004-SEMARNAT-2002, por lo que se les puede dar uso agrícola. Dosis crecientes de biosólidos incorporados al suelo no presentaron efectos en éste, en cuanto a acumulación de metales pesados, pero sí se incrementó el contenido de sales solubles, y con dosis superiores a 80 t·ha-1 se llegó a niveles que pueden reducir el rendimiento de la mayoría de cultivos

https://doi.org/10.5154/r.rchscfa.2010.04.021
PDF

Citas

ANTONIADIS V.; ALLOWAY B. J. 2001. Availability of Cd, Ni and Zn to Ryegrass in Sewage Sludge-Treated Soils at Different Temperatures. Water, Air and Soil Pollution 132: 201-214.

AYERS, R. S.; WESTCOT, D. W. 1987. La calidad del agua en la agricultura. Estudio FAO Riego y Drenaje Núm. 29. FAO. Roma, Italia.

CALIFORNIA PLANT HEALTH ASSOCIATION. 2004. Manual de fertilizantes para cultivos de alto rendimiento. Limusa. México.

CASTELLANOS, J. Z.; UVALLE, B. J. X.; AGUILAR, S. A. 2000. Manual de Interpretación de Análisis de Suelos y Aguas. 2ª Edición. Colección INCAPA. Guanajuato, México.

CHANDRA, K. S.; PRASAD. M .N. V. 2005. Risk Assesssment, Pathways, and Trace Element Toxicity of Sewage Sludge-Amended Agroforestry and Soils. In: Prasad, M.N.V.; K.S. SAJWAN and R. NAIDU. (Eds.). Trace Element in the Environment. Boca Raton, FL. USA.

CONAGUA. 2005. Inventario Nacional de Plantas Municipales de Potabilización y de Tratamiento de aguas residuales en Operación Diciembre de2004. Comisión Nacional del Agua.

CONAGUA. 2008. Inventario Nacional de Plantas Municipales de Potabilización y de Tratamiento de aguas residuales en Operación Diciembre de2007. Comisión Nacional del Agua.

CSIZINSKI, A. A. 1986. Influence of total soluble salt concentration on growth and elemental concentration of winged bean seedlings (Psophocarpus tetragonolobus L.). Commun. Soil Sci. Plant anal. 17: 1009-1018.

DE BROWERE, K.; SMOLDERS, E. 2006. Yield Response of crops amended whit sewage sludge in the fieldis more affected by sludge properties than by final soil metal concentration. European Journal of Soil Science. 57: 858-867

EPA, 2000. Aplicacion de Biosólidos al terreno. Parte1. En: Folletos Informativos de la EPA. United Estates Enviromental Protection Agency. Office of Water, Washington, D.C. http://www.estrucplan.com.ar/producciones/entrega.asp?identrega=2291

GAMRASNI, M. A. 1985. Aprovechamiento agrícola de aguas negras urbanas. Editorial Limusa. México.

GEORGE, T.; SINGLETON, P. W.; BOHLOOL, B. B. 1988. Yield, soil nitrogen uptake, and nitrogen fixation by soybean from maturity groups grown at three elevation. Agronomy J. 80: 563-567. http://www.ctahr.hawaii.edu/bnf/Downloads/Bibliography/Yield,%20Soil%20N%20Uptake,%20and%20N%20Fixation,%20George,%20Singleton,%20Bohlool,%201988.PDF

INEGI, 2009. “Estadísticas a propósito del día mundial del agua” Instituto Nacional de Estadística y Geografía, 22 de marzo de 2009. México, D.F. http://www.inegi.org.mx/inegi/contenidos/espanol/prensa/contenidos/estadisticas/2009/agua09.doc

JUMBERI, A.; YAMADA M.; YAMADA S.; FUGIYAMA, H. 2001. Salt tolerance of Grain Crops in relation to Ionic Balance and Ability to Absorb Microelements. Soil Sci. Plant Nutr., 47 (4), 657-664. http://sciencelinks.jp/j-east/article/200204/000020020402A0085739.php

JURADO, P.; T. ARREDONDO, E. F.; OLALDE, V.; FRÍAS, J. 2006. Efecto de los Biosólidos Sobre la Humedad y los Nutrimentos del Suelo y La Prducción de Forraje en pastizales Semiáridos. Terra Latinoamericana 25: 211-218. http://redalyc.uaemex.mx/pdf/573/57325214.pdf

KABATAS-PENDIAS, A.; PENDIAS, H. 2000. Trace elements in soils and plants. CRC Press. USA. P.432

LOVELL, B. 1996. Aplicación en suelos de biosólidos de drenaje para la producción de cosechas. Factsheet. Orden Núm. 95-069. Notario 8 p.

MASS, E. V.; HOFMAN, G. J. 1977. Crops salt tolerance Current assessment. J. Irrig. Drain. Div. 103: 115 – 134.

MASS, E. V. 1984. Salt tolerance of plants. In: The handbook of plant science in agriculture. B. R. Christie (ed). CRC Press, Boca Raton, Fla. USA.

MUNNS, R.; TERMAAT, A. 1986. Whole-plant Responses to salinity. Aust. J. Plant Physiol. 13, 143-160

NEBEL, B.; WRIGHT, R. T. 1999. Ciencias Ambientales “Ecología y Desarrollo Sustentable” Pearson. México. 212-243.

NORMA OFICIAL MEXICANA NOM-021-SEMARNAT-2000. Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial de la Federación. México. Publicada el 31 de diciembre de 2002.

NORMA OFICIAL MEXICANA NOM-004-SEMARNAT-2002. Protección ambiental. Lodos y biosólidos. Especificaciones y límites máximos permisibles de contaminantes para su aprovechamiento y disposición final. Diario Oficial de la Federación. México. Publicada el 13 de agosto de 2003.

NYAMANGARA, J.; MZEZEWA. J. 1999. The effect on long- term sewage sludge application on Zn, Cu, Ni and Pb levels in a clay loam soil under pasture grass in Zimbawe. Agriculture Ecosystems and Enviroment 73: 199-204. doi: https://doi.org/10.1016/S0167-8809(99)00056-0

OBERLE, S. L.; KEENEY, D. R. 1994. Interaction of Sewage Sludge with Soil-Crop-Water Sytems. In C. E. CLAPP, W. E. LARSON, and R.H. DOWDY (Ed.) Sewage Sludge: Land Utilization and the Enviroment. ASA.CSSA. SSSA. Madison. WI.

ORTIZ. H. L.; GUTIÉRREZ, R. M.; SÁNCHEZ, S. E. 1995. Ppropuesta de Manejo de los Lodos Residuales de la Planta de Tratamiento de la Ciudad Industrial del Valle de Cuernavaca, Estado de Morelos, México. Rev. Int. Contam. Ambient. 11 (2): 105-115.

OUDEH, M.; KHAN, M.; SCULLION, J. 2002. Plant accumulation of potentially toxic elements in sewage sludge as affected by soil organic matter level and mycorrhizal fungi. Enviromental Pollution. 116: 293-300. doi: https://doi.org/10.1016/S0269-7491(01)00128-2

PORTA, C. J.; ACEVEDO M.; ROQUERO, C. 2003. Edafología para la agricultura y el medio ambiente. 3ª Edición. Mundi-Prensa. Madrid, España.

SAMARAS, V.; TSADILAS, Ch. D.; STAMADIATIS, S. 2008. Effects of Repeatead Application of Municipal Sewage Sludge on Soil Fertility, Cotton Yield, and Nitrate Leaching. Agronomy Journal. 100: 477-483.

SHING, R. P.; AGRAWAL. M. 2007. Effects of sewage sludge amendment on heavy metal acumulation and cosequent respond of Beta vulgaris plants. Chemosfere. 67: 2229-2240.

SCHRODER, J. L.; ZHANG, H.; ZHOU, D; BASTA, N.; RAUN, W. R.; PAYTON, M. E.; ZAZULAK, A. 2008. The Effect of Long-Term Annual Application of Biosolids on Soils Properties, Phosphorous, and Metals. Soil Sci. Soc. Am. J. 72: 73-82

SHTANGEEVA, I. 2006. Phytoremediaton of trace element contamined soil whit cereal crops: Role of fertilizersand bacteria on bioavailability. . In: PRASAD, M.N.V., K.S. SAJWAN and R. NAIDU. (Eds.). Trace Element in the Environment. CRC. Boca Raton, FL. USA.

SHUMAN, L. M. 1999. Effect of organic waste amendments on Zn adsorpion by two soils. Soil Science. 164: 97-205.

TAMOUTSIDIS, E.; PAPADOPOULS, I.; TOKATLIDIS, I.; ZOTIS S.; MABROPOULOS, T. 2002. Wet sewage sludge application effects on soil properties and element content of leaf and root vegetables. J. Plant Nutrition. 25 (9): 1941-1955

USEPA, 1993. Standards for the Use or Disposal of Sewage Sludge (40 Code of Federal Regulations Part 503). Washington D. C., U. S. Enviromental Protection Agency.

SAS. 1995. ANOVA. In: SAS User Guide: Statistics. Cary, N.C. pp: 113-138.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2010 Revista Chapingo Serie Ciencias Forestales y del Ambiente