Revista Chapingo Serie Ciencias Forestales y del Ambiente
Actividad antioxidante, perfil mineral y lignocelulósico de la cáscara de la vaina de Theobroma cacao L. variedad Carmelo, para su posible aprovechamiento
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
Graphical abstract
Resumen gráfico

Palabras clave

cacao
material lignocelulósico
flavonoides
minerales
contenido fenólico

Cómo citar

Suárez-Patlán, E. E., Espinosa-Solares, T., Herbert-Pucheta, J. E., Hernández-Núñez, E., & Zuleta-Prada, H. (2024). Actividad antioxidante, perfil mineral y lignocelulósico de la cáscara de la vaina de Theobroma cacao L. variedad Carmelo, para su posible aprovechamiento. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 30(3), 35–51. https://doi.org/10.5154/r.rchscfa.2024.05.011

Resumen

Introducción. México es el decimotercer país productor de cacao con una producción anual de 20 000 toneladas (0.4 % de la producción mundial). Las cáscaras de vaina de cacao (CVC) representan una oportunidad para la extracción de productos de valor agregado debido a sus propiedades químicas.

Objetivo. Determinar la actividad antioxidante, el perfil mineral y los principales constituyentes químicos de CVC (Theobroma cacao L. var. Carmelo).

Materiales y métodos. Los principales constituyentes orgánicos e inorgánicos de la muestra de CVC se identificaron y cuantificaron mediante técnicas analíticas de la Asociación Técnica de las Industrias de Pulpa y Papel (TAPPI), Sociedad Estadounidense para Ensayos y Materiales (ASTM) y otros métodos reportados en la literatura.

Resultados y discusión. El contenido extraíble en disolventes orgánicos representó 19.4 %. El material lignocelulósico estuvo conformado por 30.5 % de celulosa, 19 % de hemicelulosa, 23.3 % de lignina y 7.7 % de cenizas. El contenido fenólico total fue 24.59 ± 0.93 mg equivalentes de ácido gálico∙g-1 y el contenido de flavonoides fue 2.35 ± 0.24 mg equivalentes de catequina∙g-1. Con respecto a la actividad antioxidante, se determinaron 304.84 ± 57.59 mg equivalentes de trolox para ABTS (ácido 2,2′-azino-bis[3-etilbenzotiazolina-6-sulfónico]) y 145.80 ± 3.84 mg equivalentes de trolox para FRAP (poder antioxidante férrico reductor).
Conclusiones. La CVC es una fuente viable de lignina y sus contenidos de celulosa y hemicelulosa tienen potencial como fuente de carbohidratos en la producción de biocombustibles; además, el contenido elevado de polifenoles y su capacidad antioxidante la posicionan como una fuente prometedora para la industria alimentaria y farmacéutica.

https://doi.org/10.5154/r.rchscfa.2024.05.011
PDF
Graphical abstract
Resumen gráfico

Citas

Alonso-Báez, M., Avendaño-Arrazate, C. H., Alonso-López, B. L., Iracheta-Donjuan, L., Martínez-Bolaños, M., Ruíz-Cruz, P., & Ortíz-Curiel, S. (2020). Nutritional removal of cacao fruit (Theobroma cacao L.) in Mexico. Agroproductividad, 13(8), 53–59. https://doi.org/10.32854/agrop.vi.1713

American Society for Testing and Materials (1985). Method of test for alpha-cellulose in wood ASTM D1103 – 77. USA: ASTM International.

Aregheore, E. M. (2002). Chemical evaluation and digestibility of cocoa (Theobroma cacao) byproducts fed to goats. Tropical Animal Health and Production, 34(4), 339–348. https://doi.org/10.1023/A:1015638903740

Arzeta-Ríos, A. J., Guerra-Ramírez, D., Reyes-Trejo, B., Ybarra-Moncada, M. C., & Zuleta-Prada, H. (2020). Microwave heating effect on total phenolics and antioxidant activity of green and mature coconut water. International Journal of Food Engineering, 16(12). https://doi.org/10.1515/ijfe-2019-0378

Asiedu, N. Y., Neba, F. A., & Addo, A. (2019). Modeling the attainable regions for catalytic oxidation of renewable biomass to specialty chemicals: Waste biomass to carboxylic acids. South African Journal of Chemical Engineering, 30, 1–14. https://doi. org/10.1016/j.sajce.2019.07.003

Barhoum, A., Jeevanandam, J., Rastogi, A., Samyn, P., Boluk, Y., Dufresne, A., Danquah, M. K., & Bechelany, M. (2020). Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale, 10(4), 1622–1630. https://doi.org/10.1039/D0NR04795C

Barraza, F., Schreck, E., Uzu, G., Lévêque, T., Zouiten, C., Boidot, M., & Maurice, L. (2021). Beyond cadmium accumulation: Distribution of other trace elements in soils and cacao beans in Ecuador. Environmental Research, 192(September 2020). https://doi.org/10.1016/j.envres.2020.110241

Bernabé-Santiago, R., Ávila-Calderón, L. E. A., & Rutiaga-Quiñones, J. G. (2013). Chemical components of the wood of five pine species of Morelia, Michoacán. Madera y Bosques, 19(2), 21–35. https://doi.org/10.21829/myb.2013.192338

Cádiz-Gurrea, M. L., Lozano-Sanchez, J., Contreras-Gámez, M., Legeai- Mallet, L., Fernández-Arroyo, S., & Segura-Carretero, A. (2014). Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract. Journal of Functional Foods, 10, 485–498. https://doi.org/10.1016/j.jff.2014.07.016

Vega, R., Nieto-Figueroa, K. H., & Oomah, B. D. (2018). Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds. Trends in Food Science and Technology, 81, 172–184. https://doi.org/10.1016/j.tifs.2018.09.022

Castro-Vargas, H. I., Ballesteros-Vivas, D., Ortega-Barbosa, J., Morantes-Medina, S. J., Aristizabal-Gutiérrez, F., & Parada- Alfonso, F. (2019). Bioactive phenolic compounds from the agroindustrial waste of Colombian mango cultivars ‘sugar mango’ and ‘Tommy Atkins’—An alternative for their use and valorization. Antioxidants, 8(41), 1–19. https://doi.org/10.3390/antiox8020041

Chávez-Sifontes, M., & Domine, M. E. (2013). Lignin, structure and applications: depolymerization methods for obtaining aromatic derivatives of industrial interest. Avances en Ciencias e Ingeniería, 4(4), 15–46. https://dialnet.unirioja.es/servlet/ articulo?codigo=4710101

Daud, Z., Awang, H., Mohd Kassim, A. S., Mohd Hatta, M. Z., & Mohd Aripin, A. (2014). Cocoa pod husk and corn stalk: Alternative paper fibres study on chemical characterization and morphological structures. Advanced Materials Research, 911, 331–335. https://doi.org/doi:10.4028/www.scientific.net/ AMR.911.331

Devi, A., Niazi, A., Ramteke, M., & Upadhyayula, S. (2021). Techno economic analysis of ethanol production from lignocellulosic biomass–a comparison of fermentation, thermo catalytic, and chemocatalytic technologies. Bioprocess and Biosystems Engineering, 44(6), 1093–1107. https://doi.org/10.1007/s00449-020-02504-4

Doungous, O., Minyaka, E., Longue, E. A. M., & Nkengafac, N. J. (2018). Potentials of cocoa pod husk-based compost on Phytophthora pod rot disease suppression, soil fertility, and Theobroma cacao L. growth. Environmental Science and Pollution Research, 25(25), 25327–25335. https://doi.org/10.1007/s11356-018-2591-0

Espinosa-García, J. A., Uresti-Gil, J., Vélez-Izquierdo, A., Moctezuma- López, G., Inurreta-Aguirre, H. D., & Gongora-González, S. F. (2015). Productivity and profit potential of cocoa (Theobroma cacao L.) in the Mexican tropics. Revista Mexicana de Ciencias Agrícolas, 6(5), 1–13. http://www.scielo.org.mx/pdf/remexca/v6n5/v6n5a12.pdf

European Food Safety Authority (EFSA). (2012). Cadmium dietary exposure in the European population. EFSA Journal, 10(1), 1–37. https://doi.org/10.2903/j.efsa.2012.2551

Gómez Hoyos, C., Mazo Márquez, P., Penagos Vélez, L., Serpa Guerra, A., Eceiza, A., Urbina, L., Velásquez-Cock, J., Gañán Rojo, P., Vélez Acosta, L., & Zuluaga, R. (2020). Cocoa shell: an industrial by-product for the preparation of suspensions of holocellulose nanofibers and fat. Cellulose, 27(18), 10873– 10884. https://doi.org/10.1007/s10570-020-03222-6

Gramlich, A., Tandy, S., Andres, C., Chincheros Paniagua, J., Armengot, L., Schneider, M., & Schulin, R. (2016). Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Science of the Total Environment, 580, 677–686. https://doi.org/10.1016/j.scitotenv.2016.12.014

Grob, L., Ott, E., Schnell, S., & Windhab, E. J. (2021). Characterization of endocarp powder derived from cocoa pod. Journal of Food Engineering, 305, 110591. https://doi.org/10.1016/j. jfoodeng.2021.110591

Hernández-Mendoza, A. G., Saldaña-Trinidad, S., Martínez-Hernández, S., Pérez-Sariñana, B. Y., & Láinez, M. (2021). Optimization of alkaline pretreatment and enzymatic hydrolysis of cocoa pod husk (Theobroma cacao L.) for ethanol production. Biomass and Bioenergy, 154(March). https://doi.org/10.1016/j. biombioe.2021.106268

Hernández-Rodríguez, G., Espinosa-Solares, T., Hernández-Eugenio, G., Villa-García, M., Reyes-Trejo, B., & Guerra-Ramírez, D. (2016). Influence of polar solutions on the extraction of phenolic compounds from capulín fruits (Prunus serotina). Sociedad Química de México, 60(2), 73–78. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-249X20160002 00073&lng=es&nrm=iso&tlng=en

Hernández-Rodríguez, G., Espinosa-Solares, T., Pérez-López, A., Salgado-Escobar, I., & Guerra-Ramírez, D. (2019). Antioxidant capacity of capulin (Prunus serotina subsp. capuli (Cav). McVaugh) fruit at different stages of ripening. Ecosistemas y Recursos Agropecuarios, 6(16), 35–44. https://doi.org/10.19136/era.a6n16.1947

Jamaluddin, M., Rizlan Ross, E. E., M. N. Azmi, A. F., Zubir, I., Nazir, N., Inderan, V., & Raseetha, S. (2022). Effect of extraction solvents on phenolic compounds of Theobroma cacao L. by-products using ultrasound-assisted extraction. International Journal on Advanced Science, Engineering and Information Technology, 12(1), 359–364. https://doi.org/10.18517/ijaseit.12.1.13030

Jani, S. M., & Rushdan, I. (2014). Effect of bleaching on coir fibre pulp and paper properties (Kesan pelunturan terhadap sifat-sifat pulpa dan kertas sabut kelapa). Journal of Tropical Agriculture and Food Science, 42(1), 51–61. https://www.researchgate.net/publication/270886139_Effect_of_bleaching_on_coir_fibre_ pulp_and_paper_properties_Kesan_pelunturan_terhadap_ sifat-sifat_pulpa_dan_kertas_sabut_kelapa

Jayesree, N., Hang Pui, K., Priyangaa, A., Prasad Krishnamurthy, N., Nagasundara, R. R., Turki M.S., A., Galanakis, C. M., & Chien Wei, O. (2021). Valorisation of carrot peel waste by water-induced hydrocolloidal complexation for extraction of carotene and pectin. Chemosphere, 272, 129919. https://doi.org/10.1016/j.chemosphere.2021.129919

Jochem, D., Bösch, M., Weimar, H., & Dieter, M. (2021). National wood fiber balances for the pulp and paper sector: An approach to supplement international forest products statistics. Forest Policy and Economics, 131, 102540. https://doi.org/10.1016/j. forpol.2021.102540

Lu, F., Rodriguez-García, J., Van Damme, I., Westwood, N. J., Shaw, L., Robinson, J. S., Warren, G., Chatzifragkou, A., McQueen Mason, S., Gomez, L., Faas, L., Balcombe, K., Srinivasan, C., Picchioni, F., Hadley, P., & Charalampopoulos, D. (2018). Valorisation strategies for cocoa pod husk and its fractions. Current Opinion in Green and Sustainable Chemistry, 14, 80–88. https://doi.org/10.1016/j.cogsc.2018.07.007

Martínez, R., Torres, P., Meneses, M. A., Figueroa, J. G., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2012). Chemical, technological and in vitro antioxidant properties of cocoa (Theobroma cacao L.) co-products. Food Research International, 49(1), 39–45. https://doi.org/10.1016/j.foodres.2012.08.005

Moyin-Jesu, E. I. (2007). Use of plant residues for improving soil fertility, pod nutrients, root growth and pod weight of okra (Abelmoschus esculentum L). Bioresource Technology, 98(11), 2057– 2064. https://doi.org/10.1016/j.biortech.2006.03.007

Nieto-Figueroa, K. H., Mendoza-García, N. V., Gaytán-Martínez, M., Wall-Medrano, A., Loarca-Piña, M. G. F., & Campos-Vega, R. (2020). Effect of drying methods on the gastrointestinal fate and bioactivity of phytochemicals from cocoa pod husk: In vitro and in silico approaches. Food Research International, 137, 109725. https://doi.org/10.1016/j.foodres.2020.109725

Nii, N., Jo, D., John, C., Mark, W., Robert, M., Eunice, A., Francis, K., & Julius, A. (2021). Potential of bioenergy in rural Ghana. Sustainability (Switzerland), 13(381), 1–16. https://doi.org/10.3390/su13010381

Olubunmi-Kayode, C., Olajiire-Adeoye, G., Ezekiel-Adewoyin, D. T., Ayanfe-Oluwa, O. E., & Ogur, D. (2018). Influence of cocoa pod husk-based compost on nutrient uptake of okra (Abelmoschus esculentus (L.) MOENCH) and soil properties on an Alfisol. Communications in Soil Science and Plant Analysis, 49(17), 2113– 2122. https://doi.org/10.1080/00103624.2018.1499108

Paz-Cedeno, F. R., Solorzano-Chavez, E. G., Manfrin-Dias, L., Octaviano, C. A., Bustamante, L. J. A., Monti, R., Martínez-Galán, J. P., & Masarin, F. (2022). Composition and chemical structure of hemicelluloses and polysaccharides with capability of gel formation. Clean Energy Production Technologies, 4, 111–137. https://doi.org/10.1007/978-981-16-3682-0_4

Paracchini, M. L., Wezel, A., Masden, S., Stewart, B., Karuga, J., Attard, P., Zingari, P. C. (2022). Agroecological practices supporting food production and reducing food insecurity in developing countries. Doctoral dissertation, Publications Office of the European Union.

Porto de Souza-Vandenberghe, L., Valladares-Diestra, K. K., Amaro- Bittencourt, G., Murawski de Mello, A. F., Sarmiento-Vásquez, Z., Zwiercheczewski de Oliveira, P., Melo-Pereira, G. V. de, & Soccol, C. R. (2022). Added-value biomolecules’ production from cocoa pod husks: A review. Bioresource Technology, 344, 126252. https://doi.org/10.1016/j.biortech.2021.126252

Redgwell, R., Trovato, V., Merinat, S., Curti, D., Hediger, S., & Manez, A. (2003). Dietary fibre in cocoa shell: characterisation of component polysaccharides. Food Chemistry, 81(1), 103–112. https://doi.org/10.1016/S0308-8146(02)00385-0

Ricaño-Rodríguez, J. (2018). El estudio genómico del cacao (Theobroma cacao L.); breve recopilación de sus bases conceptuales. Agro Productividad, 11(9). https://doi.org/10.32854/agrop.v11i9.1211

Rowell, R. M. (2012). Cell wall chemistry. In Rowell, R. M., R. Pettersen, & A. M. Tshabalala (Eds.), Handbook of wood chemistry and wood composites (pp. 33–72). CRS Press. https://doi.org/10.1201/b12487-5

Sánchez, M., Laca, A., Laca, A., & Díaz, M. (2023). Cocoa bean shell: A by-product with high potential for nutritional and biotechnological applications. Antioxidants, 12(5), 1028. https://doi.org/10.3390/antiox12051028

Sandesh, K., Shishir, R. K., & Vaman Rao, C. (2020). Optimization and comparison of induction heating and LPG assisted acid pretreatment of cocoa pod for ABE fermentation. Fuel, 262, 116499. https://doi.org/10.1016/j.fuel.2019.116499

Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). (2015). AVISO de inscripción de la transmisión de derechos de una variedad vegetal protegida con el título de obtentor 1036. México: Diario Oficial de la Federación. https://dof.gob.mx/nota_detalle. php?codigo=5409759&fecha=29/09/2015#gsc.tab=0

Siqueira-Melo, P., Boone-Bergamaschi, K., Tiveron, A. P., Prado- Massarioli, A., Cadorin-Oldoni, T. L., Zanusll-Giuliano, M. C., Pereira, E., & Matias de Alencar, S. (2011). Phenolic composition and antioxidant activity of agroindustrial residues. Ciencia Rural, 41(6), 1088–1093. https://doi. rg/10.1590/S0103-84782011000600027

Technical Association for the Pulp and Paper Industries (TAPPI). (1997). Preparation of extractive free-wood. TAPPI test method T 204 cm-97. Atlanta, USA: TAPPI Press.

Technical Association for the Pulp and Paper Industries (TAPPI). (2002a). Lignin acid is insoluble in wood and pulp. TAPPI test method T 222 om-02. Atlanta, USA: TAPPI Press.

Technical Association for the Pulp and Paper Industries (TAPPI). (2002b). Ash in wood and pulp. TAPPI test method T 211 om-02. Atlanta, USA: TAPPI Press.

Titiloye, J. O., Abu Bakar, M. S., & Odetoye, T. E. (2013). Thermochemical characterisation of agricultural wastes from West Africa. Industrial Crops and Products, 47, 199–203. https://doi.org/10.1016/j.indcrop.2013.03.011

U. S. Environmental Protection Agency. (2007). Microwave assisted acid digestion of sediments, sludges, soils, and oils. https://www.epa. gov/sites/default/files/2015-12/documents/3051a.pdf

Valadez-Carmona, L., Plazola-Jacinto, C. P., Hernández-Ortega, M., Hernández-Navarro, M. D., Villarreal, F., Necoechea- Mondragón, H., Ortiz-Moreno, A., & Ceballos-Reyes, G. (2017). Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innovative Food Science and Emerging Technologies, 41, 378–386. https://doi.org/10.1016/j.ifset.2017.04.012

Vargas-Arana, G., Merino-Zegarra, C., Tang, M., Pertino, M. W., & Simirgiotis, M. J. (2022). UHPLC–MS characterization, and antioxidant and nutritional analysis of cocoa waste flours from the Peruvian Amazon. Antioxidants, 11(595), 1–14. https://doi.org/10.3390/antiox11030595

Vásquez, Z. S., de Carvalho Neto, D. P., Pereira, G. V. M., Vandenberghe, L. P. S., de Oliveira, P. Z., Tiburcio, P. B., Rogez, H. L. G., Góes Neto, A., & Soccol, C. R. (2019). Biotechnological approaches for cocoa waste management: A review. Waste Management, 90, 72–83. https://doi.org/10.1016/j.wasman.2019.04.030

Vriesmann, L. C., de Mello Castanho Amboni, R. D., & De Oliveira Petkowicz, C. L. (2011). Cacao pod husks (Theobroma cacao L.): Composition and hot-water-soluble pectins. Industrial Crops and Products, 34(1), 1173–1181. https://doi.org/10.1016/j.indcrop.2011.04.004

Yao, M., Bi, X., Wang, Z., Yu, P., Dufresne, A., & Jiang, C. (2022). Recent advances in lignin-based carbon materials and their applications: A review. International Journal of Biological Macromolecules, 223(PA), 980–1014. https://doi.org/10.1016/j.ijbiomac.2022.11.070

Zheng, Y., Shi, J., Tu, M., & Cheng, Y. S. (2017). Principles and development of lignocellulosic biomass pretreatment for biofuels. In Y. Li, & X. Ge (Eds.), Advances in Bioenergy (vol. 2, pp. 1–68). Elsevier Ltd. https://doi.org/10.1016/bs.aibe.2017.03.001

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2024 Revista Chapingo Serie Ciencias Forestales y del Ambiente