Current Topics in Agronomic Science
Edaphological and Morphometric Analysis of wild populations of common bean (Phaseolus vulgaris L.) in Durango, México
ISSNe: 2954-4440
PDF - English
PDF - Spanish

Keywords

Soil nutrients
Morphometric variability
X-ray fluorescence
wild Phaseolus species

How to Cite

Lozano-Montelongo, I. I., Wallander Compean, L., Almaraz-Abaraca, N., Pérez-Salinas, S. N., Torres-Ricario, R., & Gutiérrez-Velázquez, M. V. (2025). Edaphological and Morphometric Analysis of wild populations of common bean (Phaseolus vulgaris L.) in Durango, México. Current Topics in Agronomic Science, 5, e2511. https://doi.org/10.5154/r.ctasci.2025.05.11

Abstract

Knowledge of wild populations of common bean (Phaseolus vulgaris L.) and their relationship with soil quality is essential for biodiversity conservation and crop improvement. The identification of soils with high contents of nutrients such as calcium, magnesium, potassium and other trace elements can be key to the development of bean varieties more resistant to adverse conditions. In this sense, the objective was to establish the integrated diagnosis of nutrients in soils where some wild forms of common bean grow in the State of Durango and correlate it with the morphometric characteristics of pods and seeds. Soil samples were collected in five municipalities of the State of Durango (El Mezquital, Súchil, Nombre de Dios, Canatlán and Nuevo Ideal), a sample was taken from a depth of 20 cm, evaluating the amounts of organic matter, Ca, Mg, K, P, S, Zn, Cu, Fe, Mn. There is great variability in the soil samples where wild forms of common bean grow, with the municipality of Canatlán having the highest content of beneficial elements for plants. In terms of the morphometric analysis of pods and seeds, those from Nombre de Dios and El Mezquital were the longest, widest and thickest. Variations in morphological characteristics in relation to soil quality could allow strategies for the recovery and improvement of genetic resources in a context of climate change and food security.

https://doi.org/10.5154/r.ctasci.2025.05.11
PDF - English
PDF - Spanish

References

Addinsoft (2025). XLSTAT statistical and data analysis solution. New York, USA. https://www.xlstat.com/es

Alakeh, M. N., Tamungang, N. E. B., & Alongifor, F. J. (2022). Phosphorus Adsorption and Its Correlation with Physicochemical Properties of Volcanic-Influenced Soils of Meupi-Awing in Northwest Cameroon. Applied and Environmental Soil Science, 2022, 1–11. https://doi.org/10.1155/2022/6890503

Anđelković, V., Јоvоvić, Z., & Przulj, N. (2020). Significance of wild relatives’ genetic variability in cultivated plants breeding. https://doi.org/10.7251/eoru2001091a

Arroyo P, Peña V. C B, Sánchez, U. A B. (2015). Efecto del potencial de agua en la germinación de semillas de frijol (Phaseolus vulgaris L.) silvestre y domesticado. Rev. Multidisciplinaria del Consejo de Investigación. v17: 237-239.

Bakshi, K., Liyanage, M. R., Volkin, D. B., & Middaugh, C. R. (2014). Fourier Transform Infrared Spectroscopy of Peptides (Vol. 1088, pp. 255– 269). Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-673-3_18

Beaver, J. S., González-Vélez, A., Lorenzo-Vázquez, G., Macchiavelli, R., Porch, T. G., & Estevez-de-Jensen, C. (2021). Performance of Mesoamerican bean (Phaseolus vulgaris L.) lines in an unfertilized oxisol. Agronomía Mesoamericana, 32(3), 701–718. https://doi.org/10.15517/AM.V32I3.44498

Chatterley, A. S., Laity, P. R., Holland, C., Weidner, T., Woutersen, S., & Giubertoni, G. (2022). Broadband Multidimensional Spectroscopy Identifies the Amide II Vibrations in Silkworm Films. Molecules, 27(19), 6275. https://doi.org/10.3390/molecules27196275

Dovbeshko, G. I., Afonina, U. K., Olenchuk, M. V., Kupchak, I. M., Gnatyuk,

O. P., Monastyrskyi, G. P., ... & Morozovska, A. N. (2023). Effect of 2D-WS2 Nanoparticles on a Local Electrical Field at a Membrane Vicinity: Vibrational Spectroscopy Data. The Journal of Physical Chemistry C, 128(3), 1131-1138.

Duan, J., Sontarp, E. J., & Myneni, S. (2024). Detecting Structural Environments of Carboxyl Groups in Dissolved Natural Organic Molecules. https://doi.org/10.1021/acsestwater.3c00609

Elizondo, M. S. G., Elizondo, M. G., & Linares, M. A. M. (2007). Vegetación y ecorregiones de Durango. Durango, México: Plaza y Valdés.

Freytag, G. F., & Debouck, D. G. (2002). Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America (Sida Botanical Miscellany 23). Botanical Research Institute of Texas.

Hammer, Ø., Harper, D. A. T., & Ryan, P. (2001). Past: paleontological statistical software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9. https://palaeo-electronica.org/2001_1/past/past.pdf

Hart, E. J., & Siebecker, M. G. (2024). Portable X‐ray fluorescence spectrometry accurately measures metal concentrations in aqueous Mehlich III soil extraction solutions. Soil Science Society of America Journal, 88(6), 2336-2342.

Hu, N., Zhao, L., Li, Q., Jiang, Y.-M., Sui, B., & Wang, H. (2021). Changes in carbon fractions with corn straw incorporation and comparison of carbon sequestration efficiency in Phaeozem derived from two parent materials in China. Arabian Journal of Geosciences, 14(14), 1–10. https://doi.org/10.1007/S12517-021-07587-1

Hurtado, P. B., Cohen, I. S., Arriaga, G. E., Valle, M. Á. V., & Ibarra, M. A. I. (2013). Caracterización hidrológica para cuencas en zonas áridas en méxico. 13(2), 125–132. https://dialnet.unirioja.es/servlet/articulo?codigo=5714655

Jenkins, E., Galbraith, J., & Paltseva, A. (2024). Portable X-Ray Fluorescence as a Tool for Urban Soil Contamination Analysis: Accuracy, Precision, and Practicality. EGUsphere, 2024, 1-26.

Kalinichenko, V. P., Glinushkin, A. P., Sokolov, M. S., Zinchenko, V. E., Minkina, T. M., Mandzhieva, S. S., ... & Il’ina, L. P. (2019). Impact of soil organic matter on calcium carbonate equilibrium and forms of Pb in water extracts from Kastanozem complex. Journal of Soils and Sediments, 19, 2717-2728.

Kaur, G., Prabhavathi, V., Bamel, K., & Sarwat, M. (2017). Phosphate Signaling in Plants: Biochemical and Molecular Approach (pp. 83–110). Springer, Cham. https://doi.org/10.1007/978-3-319-42183-4_4

Kimeklis, A. K., Gladkov, G., Zverev, A., Kichko, A., Andronov, E. E., Ergina, E. I., Kostenko, I. V., & Abakumov, E. (2021). Microbiomes of different ages in Rendzic Leptosols in the Crimean Peninsula. PeerJ, 9. https://doi.org/10.7717/PEERJ.10871

Kumari, K., & Ramakrishnan, V. (2023). Fourier Transform Infrared (FTIR) Spectroscopy (pp. 51–54). Humana Press. https://doi.org/10.1007/978-1-0716-3405-9_7

Lépiz, I.R., López, A.J.J., Sánchez, G.J.J., Santacruz, R.F., Nuño, R.R., Rodríguez, G.E. (2010). Características morfológicas de formas cultivadas, silvestres e intermedias de frijol común de hábito trepador. Revista Fitotecnia Mexicana, 33(1), 21-28.

Margenot, A. J., Calderón, F. J., Goyne, K. W., Mukome, F. N. D., & Parikh,

S. J. (2017). IR spectroscopy, soil analysis applications (pp. 448– 454). Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.12170- 5

Meza-Vázquez, K. E., Lépiz-Ildefonso, R., López-Alcocer, J. de J., & Morales- Rivera, M. M. (2015). Caracterización morfológica y fenológica de especies silvestres de frijol (phaseolus) morphological and phenological characterization of wild bean (phaseolus) species. http://www.scielo.org.mx/pdf/rfm/v38n1/v38n1a4.pdf

Morales-Santos, M. E., Peña-Valdivia, C. B., García-Esteva, A., Aguilar- Benítez, G., & Kohashi-Shibata, J. (2017). CARACTERÍSTICAS FÍSICAS Y DE GERMINACIÓN EN SEMILLAS Y PLÁNTULAS

DE FRIJOL (Phaseolus vulgaris L.) SILVESTRE, DOMESTICADO Y SU PROGENIE. Agrociencia, 51(1), 43–62. http://www.scielo. org.mx/pdf/agro/v51n1/1405-3195-agro-51-01-00043.pdf

Mukherjee, S., Laskar, S. (2019). Vis–NIR-based optical sensor system for estimation of primary nutrients in soil. J Opt 48, 87–103. https:// doi.org/10.1007/s12596-019-00517-1

Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., Ben Dor, E., Brown, D. J., Clairotte, M., Csorba, Á., Dardenne, P., Demattê, J. A. M., Genot, V., Guerrero, C., Knadel, M., Montanarella, L., Noon, C., Ramirez-Lopez, L., Robertson, J., Wetterlind, J. (2015). Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring (Vol. 132, pp. 139–159). Academic Press. https://doi.org/10.1016/BS.AGRON.2015.02.002

Pedron, F. de A., Deobald, G. A., Gubiani, P. I., Santos, L. A. C. dos, Azevedo, A. C. de, Reichert, J. M., & Dambroz, A. (2024). Soil hydraulic properties, mineralogical alteration and pore formation in Regosols from southern Brazil. Revista Brasileira De Ciencia Do Solo, 48. https://doi.org/10.36783/18069657rbcs20240013

Remillard, C. (2022). An investigation in laser diffraction soil particle size distribution analysis to obtain compatible results with sieve and pipette method. Soil & Tillage Research, 223, 105450. https://doi.org/10.1016/j.still.2022.105450

Romanyà, J., & Casals, P. (2020). Biological Nitrogen Fixation Response to Soil Fertility Is Species-Dependent in Annual Legumes. Journal of Soil Science and Plant Nutrition, 20(2), 546–556. https://doi.org/10.1007/S42729-019-00144-6

Salgotra, R. K., Thompson, M., & Chauhan, B. S. (2021). Unravelling the genetic potential of untapped crop wild genetic resources for crop improvement. Conservation Genetics Resources, 1–16. https://doi.org/10.1007/S12686-021-01242-3

Schindler, B., Barnes, L., Renois, G. P., Gray, C. J., Chambert, S., Chambert, S., Fort, S., Fort, S., Flitsch, S. L., Loison, C., Allouche, A.-R.,

& Compagnon, I. (2017). Anomeric memory of the glycosidic bond upon fragmentation and its consequences for carbohydrate sequencing. Nature Communications, 8(1), 973. https://doi.org/10.1038/S41467-017-01179-Y

Serafimova, E., & Dedelyanova, K. (2023). Fourier transform infrared spectroscopic analysis of mine remediation soil. review of the Bulgarian Geological Society, 84(part 3), 253-256.

Sharma, R., & Kumar, S. (2023). Rapid Prediction of ANFO Based Explosives through ATR-FTIR Analysis – Use of ATR-FTIR in Explosives. BrJAC Brazilian Journal of Analytical Chemistry. https://doi.org/10.30744/brjac.2179-3425.tn-68-2023

Shin, S. K., Lee, S. J., & Park, J. H. (2025). Prediction of Soil Properties Using Vis-NIR Spectroscopy Combined with Machine Learning: A Review. Sensors, 25(16), 5045. https://doi.org/10.3390/s25165045

Siddique, I. M. (2024). Exploring Functional Groups and Molecular Structures: A Comprehensive Analysis using FTIR Spectroscopy. Social Science Research Network. https://doi.org/10.2139/ssrn.4886526

Tomlekova, N. B. (2012). Genetic Diversity of Bulgarian Phaseolus vulgaris

L. Germplasm Collection Through Phaseolin and Isozyme Markers. InTech. https://doi.org/10.5772/36200

Wallander-Compean, L., Almaraz-Abarca, N., Alejandre-Iturbide, G., Uribe-Soto, J. N., Ávila-Reyes, J. A., Ricario, R. T., Herrera- Arrieta, Y., & Delgado-Alvarado, E. A. (2022). Variación fenológica y morfométrica de Phaseolus vulgaris (Fabaceae) de cinco poblaciones silvestres de Durango, México. Botanical Sciences, 100(3), 563–578. https://doi.org/10.17129/botsci.2981

Warren, C. R. (2022). D2O labelling reveals synthesis of small, water-soluble metabolites in soil. Soil Biology and Biochemistry, 165, 108543.

Yang, M., Zhou, D., Hang, H., Chen, S., Liu, H., Lv, H., Jia, H., & Zhao,

G. (2024). Effects of Balancing Exchangeable Cations Ca, Mg, and K on the Growth of Tomato Seedlings (Solanum lycopersicum L.) Based on Increased Soil Cation Exchange Capacity. Agronomy. https://doi.org/10.3390/agronomy14030629

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2025 Current Topics in Agronomic Science