Abstract
Las zeolitas son minerales de estructura cristalina y nanoporosa con alta capacidad de adsorción de agua y retención de nutrimentos, los cuales pueden ser liberados de manera gradual al entorno radicular. Estas propiedades las posicionan como materiales con potencial para mejorar la disponibilidad nutrimental y la eficiencia productiva en cultivos agrícolas. El objetivo de la presente investigación fue analizar el efecto de la incorporación de zeolita al sustrato sobre el crecimiento de plantas de lechuga (Lactuca sativa L. cv. Maximus). Las semillas se establecieron en charolas de espuma de polifenol y se regaron con solución nutritiva Universal Steiner al 25 y 50 %. A los 30 días después de la siembra, las plántulas se transfirieron a bolsas de polietileno de 3 L que contenían una mezcla de tezontle (partículas > 0.5 cm) y zeolita en proporciones de 0, 2, 4 y 6 % (v/v). La adición de zeolita al sustrato disminuyó la altura de planta y número de hojas en las dosis evaluadas, además, la concentración al 6 % redujo la longitud de la hoja más grande en relación con el tratamiento testigo. El suministro de zeolita al sustrato altera el crecimiento de plantas de lechuga.
References
Ahmed, O. H., Sumalatha, G., & Muhamad, A. N. (2010). Use of zeolite in maize (Zea mays) cultivation on nitrogen, potassium and phosphorus uptake and use efficiency. International Journal of the Physical Sciences, 5(15), 2393-2401.
Bybordi, A., & Ebrahimian, E. (2013). Growth, yield and quality components of canola fertilized with urea and zeolite. Communications in Soil Science and Plant Analysis, 44(19), 2896–2915. h5ps://doi.org/10.1080/00103624.2013.823986
Cabrera-Fajardo, S. R., Medina-Ramírez, A., & Fuentes-Ramírez, R. (2018). Evaluación fitotoxicológica de nanozeolitas. Jóvenes en la Ciencia, 4(1), 1223–1228.
Govindasamy, P., Mahawer, S. K., Sarangi, D., Halli, H. M., Das, T. K., Raj, R., Saini, R. K.,
Choudhary, R. K., Verma, A. K., Kumar, R., Soni, P. G., Goyal, R. K., Choudhary, M., Kumar, P.,
& Chandra, A. (2022). The comparison of Canopeo and SamplePoint for measurement of green canopy cover for forage crops in India. MethodsX, 9, 101916. h5ps://doi.org/10.1016/j.mex.2022.101916
Hassan, M. U., Shah, S. T., Basit, A., Hikal, W. M., Khan, M. A., Khan, W., Tkachenko, K. G., Brini, F., & Said-Al Ahl, H. A. H. (2024). Improving wheat yield with zeolite and tillage practices under rain-fed conditions. Land, 13(8), 1248. h5ps://doi.org/10.3390/land13081248
Hazrati, S., Tahmasebi-Sarvestani, Z., Mokhtassi-Bidgoli, A., Modarres-Sanavy, S. A. M., Mohammadi, H., & Nicola, S. (2017). Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L. Agricultural Water Management, 181, 66–72. h5ps://doi.org/10.1016/j.agwat.2016.11.026
Hazrati, S., Khurizadeh, S., & Sadeghi, A. R. (2022). Application of zeolite improves water and nitrogen use efficiency while increasing essential oil yield and quality of Salvia officinalis under water-deficit stress. Saudi Journal of Biological Sciences, 29(3), 1707–1716. h5ps://doi.org/10.1016/j.sjbs.2021.10.059
Kim, M. J., Moon, Y., Tou, J. C., Mou, B., & Waterland, N. L. (2016). Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). Journal of Food Composition and Analysis, 49, 19-34. h5ps://doi.org/10.1016/j.jfca.2016.03.004
Lahori, A. H., Mierzwa-Hersztek, M., Demiraj, E., Sajjad, R. U., Ali, I., Shehnaz, H., Aziz, A., Zuberi, M. H., Pirzada, A. M., Hassan, K., & Zhang, Z. (2020). Direct and residual impacts of
zeolite on the remediation of harmful elements in multiple contaminated soils using cabbage in rotation with corn. Chemosphere, 250, 126317. h5ps://doi.org/10.1016/j.chemosphere.2020.126317
Li, Z., Zhang, Y., & Li, Y. (2013). Zeolite as slow release fertilizer on spinach yields and quality in a greenhouse test. Journal of Plant Nutrition, 36(10), 1496–1505. https://doi.org/10.1080/01904167.2013.790429
Maestre-Valero, J. F., Martin-Gorriz, B., Soto-García, M., Martinez-Mate, M. A., & Martinez- Alvarez, V. (2018). Producing lettuce in soil-based or in soilless outdoor systems: Which is more economically profitable? Agricultural Water Management, 206, 48–55.
h5ps://doi.org/10.1016/j.agwat.2018.04.030
Mahmoud, A. W. M., Rashad, H. M., Esmail, S. E. A., Alsamadany, H., & Abdeldaym, E. A. (2024). A tool to enhance drought tolerance in coriander plants for improving growth and productivity. Plants, 13(3), 455. h5ps://doi.org/10.3390/plants13030455
Ozbahce, A., Tari, A. F., Gönülal, E., Simsekli, N., & Padem, H. (2014). The effect of zeolite applications on yield components and nutrient uptake of common bean under water stress. Archives of Agronomy and Soil Science, 61(5), 615–626. h5ps://doi.org/10.1080/03650340.2014.946021
Rahmany-Samani, A., Ghobadinia, M., Sayyed-Hassan, T., Nourmahnad, N., & Danesh-Shahraki,
A. (2023). The effect of irrigation and zeolite management on the reduction of cadmium accumulation in rice. Agricultural Water Management, 287, 108448. h5ps://doi.org/10.1016/j.agwat.2023.108448
Sangeetha, C., & Baskar, P. (2016). Zeolite and its potential uses in agriculture: A critical review. Agricultural Reviews, 37(2), 101–108. h5ps://doi.org/10.18805/ar.v0iof.9627
Sharma, P. C. D., Rahman, M. M., Mollah, M. A. H., & Islam, M. S. (2009). Influence of method and date of planting on the production of lettuce. Bangladesh Journal of Agricultural Research, 34(1), 75–80. https://doi.org/10.3329/bjar.v34i1.5747
Smedt, C. D., Steppe, K., & Spanoghe, P. (2017). Beneficial effects of zeolites on plant photosynthesis. Advanced Material Science, 2(1), 1–6. h5ps://doi.org/10.15761/AMS.1000115
Steiner, A. A. (1984). The universal nutrient solution. In Proceedings of the Sixth International Congress on Soilless Culture (pp. 633–650). Wageningen, The Netherlands.
Szatanik-Kloc, A., Szerement, J., Adamczuk, A., & Józefaciuk, G. (2021). Effect of low zeolite doses on plants and soil physicochemical properties. Materials, 14(10), 2617. h5ps://doi.org/10.3390/ma14102617
Tanaka, F. C., Yonezawa, U. G., de Moura, M. R., & Aouada, G. A. (2023). Obtention, characterization, and herbicide diquat carrier/release properties by nanocomposite hydrogels based on polysaccharides and zeolite for future use in agriculture. Environmental Nanotechnology, Monitoring & Management, 20, 100880. h5ps://doi.org/10.1016/j.enmm.2023.100880
Zeinalipour, N., & Saadati, S. (2024). Physiological and biochemical response of strawberry cv. Diamond to Nano zeolite soil application and cinnamic acid foliar application. Scientific Reports, 14(1), 28908. h5ps://doi.org/10.1038/s41598-024-76419-5

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2025 Current Topics in Agronomic Science

 
	
