Abstract
El fruto de capulín (Prunus serótina; Familia Rosacea) es valorado desde la época prehispánica por sus propiedades medicinales, utilizadas en el tratamiento de algunas enfermedades. Aunque México forma parte del centro de origen del capulín, la producción y el consumo de esta fruta ha disminuido en los últimos años, convirtiéndose en un fruto subutilizado. Son pocas las investigaciones sobre sus propiedades nutricionales y nutracéuticas. El objetivo de esta investigación fue evaluar las propiedades físico-químicas, componentes nutricionales y nutracéuticos de frutos de capulín, frescos y procesados de cuatro segregantes. Los frutos presentaron altos contenidos de proteína y fibra. Se encontraron diferencias significativas del contenido de nutracéuticos entre los cuatro tipos de segregantes. El proceso térmico no disminuyó la calidad nutracéutica (excepción de las antocianinas) de los cuatro tipos de segregantes, éste únicamente afectó los atributos nutricionales. Por lo tanto, los segregantes de mayor valor nutracéutico fueron Puebla 5-28F y Puebla 5-3F, por sus elevados contenidos de compuestos fenólicos y antocianinas. En conclusión, los frutos de capulín contienen una gran variedad de compuestos antioxidantes y nutricionales que su consumo podría generar beneficios en la salud humana.
References
Alcántar-González, G., & Sandoval-Villa, M. (1999). Manual de Análisis Químico de Tejido Vegetal. Sociedad Mexicana de la Ciencia del Suelo, A. C. 1999. Chapingo, México.
Anttonen, M. J., & Karjalainen, R. O. (2005). Environmental and genetic variation of phenolic compounds in red raspberry. Journal of Food Composition and Analysis, 18(8), 759–769. https://doi.org/10.1016/j.jfca.2004.11.003
AOAC. (2005). Official Methods of Analysis. (18th Ed.). Association of Official Analytical Chemist.
Ballistreri, G., Continella, A., Gentile, A., Amenta, M., Fabroni, S., & Rapisarda, P. (2013). Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. Food Chemistry, 140(4), 630–638. 498 https://doi.org/10.1016/j.foodchem.2012.11.024
Baxter, C. J., Carrari, F., Bauke, A., Overy, S., Hill, S. A., Quick, P. W., Fernie, A. R., & Sweetlove, L. J. (2005). Fruit Carbohydrate Metabolism in an Introgression Line of Tomato with Increased Fruit Soluble Solids. Plant and Cell Physiology, 46(3), 425–437. https://doi.org/10.1093/pcp/pci040 502
Blejan, A. M., Nour, V., Păcularu-Burada, B., & Popescu, S. M. (2023). Wild bilberry, blackcurrant, and blackberry by-products as a source of nutritional and bioactive compounds. International Journal of Food Properties, 26(1), 1579–1595. https://doi.org/10.1080/10942912.2023.2224530
Cui, T., Nakamura, K., Tian, S., Kayahara, H., & Tian, Y.-L. (2006). Polyphenolic Content and 506 Physiological Activities of Chinese Hawthorn Extracts. Bioscience, Biotechnology, and 507 Biochemistry, 70(12), 2948–2956. https://doi.org/10.1271/bbb.60361
Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2002). Estimation of total flavonoid content 509 in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10(3), 510 178-182. https://doi.org/10.3821/2224-6614.2748
Deng, L.-Z., Mujumdar, A. S., Zhang, Q., Yang, X.-H., Wang, J., Zheng, Z.-A., Gao, Z.-J., & Xiao, H.-W. (2019). Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes – a comprehensive review. Critical Reviews in Food Science and Nutrition, 59(9), 1408–1432. https://doi.org/10.1080/10408398.2017.1409192 515
Dürüst, N., Sümengen, D., & Dürüst, Y. (1997). Ascorbic Acid and Element Contents of Foods of Trabzon (Turkey). Journal of Agricultural and Food Chemistry, 45(6), 2085–2087. https://doi.org/10.1021/jf9606159 518
Fresnedo-Ramírez, J., Segura, S., & Muratalla-Lúa, A. (2011). Morphovariability of capulín (Prunus serotina Ehrh.) in the central-western region of Mexico from a plant genetic resources perspective. Genetic Resources and Crop Evolution, 58(4), 481–495. https://doi.org/10.1007/s10722-010-9592-2 521
García, G., García, A., Mejía, Ó., Clavijo, D., Hernández, S., Báez, S., & Cobos, C. (2006). Aspectos bioclínicos y patobiológicos de la vitamina C en la especie humana. CES Medicina, 20(2), 3479- 523 3495. https://doi.org/10.3390/molecules20023479 524
García-Mateos, R., Ibarra-Estrada, E., & Nieto-Angel, R. (2013). Antioxidant compounds in hawthorn fruits (Crataegus spp.) of Mexico. Revista Mexicana de Biodiversidad, 84(4), 1298–1304. https://doi.org/10.7550/rmb.35675 527
García-Aguilar, L., Rojas-Molina, A., Ibarra-Alvarado, C., Rojas-Molina, J., Vázquez-Landaverde, P., Luna-Vázquez, F., & Zavala-Sánchez, M. (2015). Nutritional Value and Volatile Compounds of Black Cherry (Prunus serotina) Seeds. Molecules, 20(2), 3479–3495. 530 https://doi.org/10.3390/molecules20023479
Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and Measurement of Anthocyanins by UV‐ Visible Spectroscopy. Current Protocols in Food Analytical Chemistry, 00(1). 533 https://doi.org/10.1002/0471142913.faf0102s00
Guzmán, F. A., Segura-Ledesma, S. D., & Almaguer-Vargas, G. (2020). El capulín (Prunus serotina Ehrh.): Árbol multipropósito con potencial forestal en México. Madera y Bosques, 26(1). 536 https://doi.org/10.21829/myb.2020.2611866
Hernández Rodríguez, G., Espinosa- Solares, T., Perez-Lopez, A., Salgado-Escobar, I., & Guerra Ramìrez, D. (2019). Antioxidant capacity of capulin (Prunus serotina subsp. Capuli (Cav). McVaugh) fruit at different stages of ripening. Ecosistemas y Recursos Agropecuarios, 6(16), 35–44. PUBLICACIÓN https://doi.org/10.19136/era.a6n16.1947
Ibarra-Alvarado, C., Rojas, A., Luna, F., Rojas, J., Rivero-Cruz, B., & Rivero-Cruz, J. (2009). Vasorelaxant constituents of the leaves of Prunus serotina “Capulín”. Revista Latinoamericana de Química. https://www.semanticscholar.org/paper/Vasorelaxant-constituents-of-the-leaves-of Prunus-Ibarra-Alvarado-Rojas/ad6ce32ea8c6eba2a9e8adeeeb937e23764d52be
Ioniță-Mîndrican, C.-B., Ziani, K., Mititelu, M., Oprea, E., Neacșu, S. M., Moroșan, E., Dumitrescu, D.-E., Roșca, A. C., Drăgănescu, D., & Negrei, C. (2022). Therapeutic Benefits and Dietary Restrictions of Fiber Intake: A State of the Art. Review. Nutrients, 14(13), 2641. 548 https://doi.org/10.3390/nu14132641 549
Jimenez, M., Castillo, I., Azuara, E., & Beristain, C. I. (2011). Actividad antioxidante y antimicrobiana de extractos de capulín (Prunus serotina subsp capuli). Revista mexicana de ingeniería química, 10(1), 29–37.
Kükürt, A., & Gelen, V. (2024). Understanding Vitamin C: Comprehensive Examination of Its Biological Significance and Antioxidant Properties. En A. Kükürt & V. Gelen (Eds.), Ascorbic Acid— Biochemistry and Functions. IntechOpen. https://doi.org/10.5772/intechopen.114122 555
López-Hernández, E. F., Santiago-Mejía, H., & Ortiz, Y. G. (2024). Conocimiento etnobotánico asociado al árbol de capulín (Prunus serotina Ehrh.) en comunidades mazahua de Jocotitlán, Estado de México, México. Etnobiología, 22(1), Article 1.
Luna-Vázquez, F., Ibarra-Alvarado, C., Rojas-Molina, A., Rojas-Molina, J., Yahia, E., Rivera Pastrana, D., Rojas-Molina, A., & Zavala-Sánchez, Á. M. (2013). Nutraceutical Value of Black 560 Cherry Prunus serotina Ehrh. Fruits: Antioxidant and Antihypertensive Properties. Molecules, 18(12), 561 14597–14612. https://doi.org/10.3390/molecules181214597 562
McGuire, R. G. (1992). Reporting of Objective Color Measurements. HortScience, 27(12), 1254– 563 1255. https://doi.org/10.21273/HORTSCI.27.12.1254
Oliveira, C., Amaro, L. F., Pinho, O., & Ferreira, I. M. P. L. V. O. (2010). Cooked blueberries: 565 Anthocyanin and anthocyanidin degradation and their radical-scavenging activity. Journal of Agricultural and Food Chemistry, 58(16), 9006–9012. https://doi.org/10.1021/jf101923w
Ordaz-Galindo, A., Wesche-Ebeling, P., Wrolstad, R. E., Rodriguez-Saona, L., & Argaiz-Jamet, A. (1999). Purification and identification of Capulin (Prunus serotina Ehrh) anthocyanins. Food PUBLICACIÓN Chemistry, 65(2), 201–206. https://doi.org/10.1016/S0308-8146(98)00196-4
Pairon, M. C., & Jacquemart, A.-L. (2005). Disomic Segregation of Microsatellites in the Tetraploid Prunus serotina Ehrh. (Rosaceae). Journal of the American Society for Horticultural Science, 130(5), 729–734. https://doi.org/10.21273/JASHS.130.5.729 573
Pathania, S., Itle, R. A., Chávez, C. R., Lema, L. F., Caballero-Serrano, V., Carrasco, J. C., & Chavez, D. J. (2022). Fruit Characterization of Prunus serotina subsp. Capuli. Horticulturae, 8(9), 838. https://doi.org/10.3390/horticulturae8090838
Petitpierre, B., Pairon, M., Broennimann, O., Jacquemart, A. L., Guisan, A., & Besnard, G. (2009). Plastid DNA variation in Prunus serotina var. Serotina (Rosaceae), a North American tree invading Europe. European Journal of Forest Research, 128(5), 431–436. https://doi.org/10.1007/s10342- 579 009-0287-1
Potì, F., Santi, D., Spaggiari, G., Zimetti, F., & Zanotti, I. (2019). Polyphenol Health Effects on Cardiovascular and Neurodegenerative Disorders: A Review and Meta-Analysis. International Journal of Molecular Sciences, 20(2), 351. https://doi.org/10.3390/ijms20020351
Potter, D. (2011). Prunus. En C. Kole (Ed.), Wild Crop Relatives: Genomic and Breeding Resources (pp. 129–145). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-16057-8_7
Ramalakshmi, K., Subhapriya, P., Ananthavalli, K., Sarada, K., & Shanmugapriya, D. (2021). Impact 586 of cooking on nutrients in selected vegetables. International Journal of Engineering Research and Application, 11(2), 31-35, https://doi.org/10.9790/9622-1102023135].
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Reynoso-Camacho, R., Ramos-Gómez, M., Loarca-Piña, G., Guevara-González, R., & Torres Pacheco, I. (2006). Bioactive components in common beans (Phaseolus vulgaris L.). 593 https://www.semanticscholar.org/paper/Bioactive-components-in-common-beans-(Phaseolus594 Reynoso-Camacho-Ramos-G%C3%B3mez/6f298346344c2ea4b0c585e7c7b3c1df9f23f2ab
Román-Cortés, N. R., García-Mateos, Ma. del R., Castillo-González, A. Ma., Sahagún-Castellanos, J., & Jiménez-Arellanes, Ma. A. (2018). Características nutricionales y nutracéuticas de hortalizas de uso ancestral en México. Revista Fitotecnia Mexicana, 41(3), 245–253. PUBLICACIÓN https://doi.org/10.35196/rfm.2018.3.245-253
SAS Institute Inc. (2002). SAS/STAT Software, Version 9.00 [Statistical Analysis System 9.0 for Windows].
SIAP. (2024). Sistema de Información Agroalimentaria de Consulta (Versión 2024) [Software]. Servicio de Información Agroalimentaria y Pesquera. Swain, E., Li, C. P., & Poulton, J. E. (1992). Development of the Potential for Cyanogenesis in Maturing Black Cherry (Prunus serotina Ehrh.) Fruits. Plant Physiology, 98(4), 1423–1428. https://doi.org/10.1104/pp.98.4.1423
Telichowska, A., Kobus-Cisowska, J., & Szulc, P. (2020). Phytopharmacological Possibilities of Bird 607 Cherry Prunus padus L. and Prunus serotina L. Species and Their Bioactive Phytochemicals. 608 Nutrients, 12(7), 1966. https://doi.org/10.3390/nu12071966 609
Toh, J. Y., Tan, V. M. H., Lim, P. C. Y., Lim, S. T., & Chong, M. F. F. (2013). Flavonoids from Fruit and Vegetables: A Focus on Cardiovascular Risk Factors. Current Atherosclerosis Reports, 15(12), 611. https://doi.org/10.1007/s11883-013-0368-y 612
Waterman, P. G., & Mole, S. (1994). Analysis of phenolic plant metabolites. Methods in Ecology. Blackwell Scientific Publications, Oxford. 238 p.
Yagmur, C., & Taskin, M. (2011). Study on changes in mineral content of plum (Prunus domestica) and strawberry (Fragaria×ananassa) during canning. The Indian Journal of Agricultural Sciences, 616 81(8), Article 8. https://epubs.icar.org.in/index.php/IJAgS/article/view/8424

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2025 Current Topics in Agronomic Science