Current Topics in Agronomic Science
Nutraceutical and nutritional characteristics of capulin segregants (Prunus serotina) fresh and processed
ISSNe: 2954-4440
PDF - English
PDF - Spanish

Keywords

antioxidants
minerals
proximal
genetic segregation

How to Cite

Castillo García , O., García-Mateos, M. del R., Castillo Gonzalez , A. M., Ybarra Moncada, M. C., & Hernández Ramos , L. (2025). Nutraceutical and nutritional characteristics of capulin segregants (Prunus serotina) fresh and processed. Current Topics in Agronomic Science, 5. https://doi.org/10.5154/r.ctasci.2024.05.02

Abstract

The capulin fruit (<em>Prunus serotonin</em>; Family Rosacea) has been valued since pre-hispanic times for its medicinal properties, used in the treatment of some diseases. Although Mexico is part of the center of origin of the capulin, production and consumption of this fruit have decreased in recent years, becoming an underutilized fruit. There is little research on its nutritional and nutraceutical properties. The aim of this investigation was to evaluate the physicochemical properties, nutritional and nutraceuticals components of fresh and processed capulin fruits, from four segregants. Polar and equatorial diameter, peel color was determined by evaluating <em>L</em> (brightness), the angle of tone (<em>hue</em>) and color purity or chromaticity index (<em>chroma</em>), pH, and TSS; as well as the content of carbohydrates, ash, humidity, crude fiber, protein, and lipid content were quantified according to the AOAC guidelines. Mineral content was quantified by atomic emission spectrophotometry, phenolic compounds by the FolinCiocalteu method, anthocyanins by the pH differential method, and antioxidant activity by the ABTS method. The fruits showed high protein and fiber contents. Significant differences in nutraceutical content were found among the four types of segregants. The thermal process did not decrease the nutraceutical quality (except anthocyanins) of the four types of segregants, this only affected the nutritional attributes. Therefore, the segregants with the highest nutraceutical value were Puebla 5-28F and Puebla 5-3F, due to their high contents of phenolic compounds and anthocyanins. In conclusion, capulin fruits contain a wide variety of antioxidant and nutritional compounds, and their consumption could generate benefits for human health.

https://doi.org/10.5154/r.ctasci.2024.05.02
PDF - English
PDF - Spanish

References

Alcántar-González, G., & Sandoval-Villa, M. (1999). Manual de Análisis Químico de Tejido Vegetal. Sociedad Mexicana de la Ciencia del Suelo, A. C. 1999. Chapingo, México.

Anttonen, M. J., & Karjalainen, R. O. (2005). Environmental and genetic variation of phenolic compounds in red raspberry. Journal of Food Composition and Analysis, 18(8), 759–769. https://doi.org/10.1016/j.jfca.2004.11.003

AOAC. (2005). Official Methods of Analysis. (18th Ed.). Association of Official Analytical Chemist.

Ballistreri, G., Continella, A., Gentile, A., Amenta, M., Fabroni, S., & Rapisarda, P. (2013). Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. Food Chemistry, 140(4), 630–638. 498 https://doi.org/10.1016/j.foodchem.2012.11.024

Baxter, C. J., Carrari, F., Bauke, A., Overy, S., Hill, S. A., Quick, P. W., Fernie, A. R., & Sweetlove, L. J. (2005). Fruit Carbohydrate Metabolism in an Introgression Line of Tomato with Increased Fruit Soluble Solids. Plant and Cell Physiology, 46(3), 425–437. https://doi.org/10.1093/pcp/pci040 502

Blejan, A. M., Nour, V., Păcularu-Burada, B., & Popescu, S. M. (2023). Wild bilberry, blackcurrant, and blackberry by-products as a source of nutritional and bioactive compounds. International Journal of Food Properties, 26(1), 1579–1595. https://doi.org/10.1080/10942912.2023.2224530

Cui, T., Nakamura, K., Tian, S., Kayahara, H., & Tian, Y.-L. (2006). Polyphenolic Content and 506 Physiological Activities of Chinese Hawthorn Extracts. Bioscience, Biotechnology, and 507 Biochemistry, 70(12), 2948–2956. https://doi.org/10.1271/bbb.60361

Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2002). Estimation of total flavonoid content 509 in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10(3), 510 178-182. https://doi.org/10.3821/2224-6614.2748

Deng, L.-Z., Mujumdar, A. S., Zhang, Q., Yang, X.-H., Wang, J., Zheng, Z.-A., Gao, Z.-J., & Xiao, H.-W. (2019). Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes – a comprehensive review. Critical Reviews in Food Science and Nutrition, 59(9), 1408–1432. https://doi.org/10.1080/10408398.2017.1409192 515

Dürüst, N., Sümengen, D., & Dürüst, Y. (1997). Ascorbic Acid and Element Contents of Foods of Trabzon (Turkey). Journal of Agricultural and Food Chemistry, 45(6), 2085–2087. https://doi.org/10.1021/jf9606159 518

Fresnedo-Ramírez, J., Segura, S., & Muratalla-Lúa, A. (2011). Morphovariability of capulín (Prunus serotina Ehrh.) in the central-western region of Mexico from a plant genetic resources perspective. Genetic Resources and Crop Evolution, 58(4), 481–495. https://doi.org/10.1007/s10722-010-9592-2 521

García, G., García, A., Mejía, Ó., Clavijo, D., Hernández, S., Báez, S., & Cobos, C. (2006). Aspectos bioclínicos y patobiológicos de la vitamina C en la especie humana. CES Medicina, 20(2), 3479- 523 3495. https://doi.org/10.3390/molecules20023479 524

García-Mateos, R., Ibarra-Estrada, E., & Nieto-Angel, R. (2013). Antioxidant compounds in hawthorn fruits (Crataegus spp.) of Mexico. Revista Mexicana de Biodiversidad, 84(4), 1298–1304. https://doi.org/10.7550/rmb.35675 527

García-Aguilar, L., Rojas-Molina, A., Ibarra-Alvarado, C., Rojas-Molina, J., Vázquez-Landaverde, P., Luna-Vázquez, F., & Zavala-Sánchez, M. (2015). Nutritional Value and Volatile Compounds of Black Cherry (Prunus serotina) Seeds. Molecules, 20(2), 3479–3495. 530 https://doi.org/10.3390/molecules20023479

Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and Measurement of Anthocyanins by UV‐ Visible Spectroscopy. Current Protocols in Food Analytical Chemistry, 00(1). 533 https://doi.org/10.1002/0471142913.faf0102s00

Guzmán, F. A., Segura-Ledesma, S. D., & Almaguer-Vargas, G. (2020). El capulín (Prunus serotina Ehrh.): Árbol multipropósito con potencial forestal en México. Madera y Bosques, 26(1). 536 https://doi.org/10.21829/myb.2020.2611866

Hernández Rodríguez, G., Espinosa- Solares, T., Perez-Lopez, A., Salgado-Escobar, I., & Guerra Ramìrez, D. (2019). Antioxidant capacity of capulin (Prunus serotina subsp. Capuli (Cav). McVaugh) fruit at different stages of ripening. Ecosistemas y Recursos Agropecuarios, 6(16), 35–44. PUBLICACIÓN https://doi.org/10.19136/era.a6n16.1947

Ibarra-Alvarado, C., Rojas, A., Luna, F., Rojas, J., Rivero-Cruz, B., & Rivero-Cruz, J. (2009). Vasorelaxant constituents of the leaves of Prunus serotina “Capulín”. Revista Latinoamericana de Química. https://www.semanticscholar.org/paper/Vasorelaxant-constituents-of-the-leaves-of Prunus-Ibarra-Alvarado-Rojas/ad6ce32ea8c6eba2a9e8adeeeb937e23764d52be

Ioniță-Mîndrican, C.-B., Ziani, K., Mititelu, M., Oprea, E., Neacșu, S. M., Moroșan, E., Dumitrescu, D.-E., Roșca, A. C., Drăgănescu, D., & Negrei, C. (2022). Therapeutic Benefits and Dietary Restrictions of Fiber Intake: A State of the Art. Review. Nutrients, 14(13), 2641. 548 https://doi.org/10.3390/nu14132641 549

Jimenez, M., Castillo, I., Azuara, E., & Beristain, C. I. (2011). Actividad antioxidante y antimicrobiana de extractos de capulín (Prunus serotina subsp capuli). Revista mexicana de ingeniería química, 10(1), 29–37.

Kükürt, A., & Gelen, V. (2024). Understanding Vitamin C: Comprehensive Examination of Its Biological Significance and Antioxidant Properties. En A. Kükürt & V. Gelen (Eds.), Ascorbic Acid— Biochemistry and Functions. IntechOpen. https://doi.org/10.5772/intechopen.114122 555

López-Hernández, E. F., Santiago-Mejía, H., & Ortiz, Y. G. (2024). Conocimiento etnobotánico asociado al árbol de capulín (Prunus serotina Ehrh.) en comunidades mazahua de Jocotitlán, Estado de México, México. Etnobiología, 22(1), Article 1.

Luna-Vázquez, F., Ibarra-Alvarado, C., Rojas-Molina, A., Rojas-Molina, J., Yahia, E., Rivera Pastrana, D., Rojas-Molina, A., & Zavala-Sánchez, Á. M. (2013). Nutraceutical Value of Black 560 Cherry Prunus serotina Ehrh. Fruits: Antioxidant and Antihypertensive Properties. Molecules, 18(12), 561 14597–14612. https://doi.org/10.3390/molecules181214597 562

McGuire, R. G. (1992). Reporting of Objective Color Measurements. HortScience, 27(12), 1254– 563 1255. https://doi.org/10.21273/HORTSCI.27.12.1254

Oliveira, C., Amaro, L. F., Pinho, O., & Ferreira, I. M. P. L. V. O. (2010). Cooked blueberries: 565 Anthocyanin and anthocyanidin degradation and their radical-scavenging activity. Journal of Agricultural and Food Chemistry, 58(16), 9006–9012. https://doi.org/10.1021/jf101923w

Ordaz-Galindo, A., Wesche-Ebeling, P., Wrolstad, R. E., Rodriguez-Saona, L., & Argaiz-Jamet, A. (1999). Purification and identification of Capulin (Prunus serotina Ehrh) anthocyanins. Food PUBLICACIÓN Chemistry, 65(2), 201–206. https://doi.org/10.1016/S0308-8146(98)00196-4

Pairon, M. C., & Jacquemart, A.-L. (2005). Disomic Segregation of Microsatellites in the Tetraploid Prunus serotina Ehrh. (Rosaceae). Journal of the American Society for Horticultural Science, 130(5), 729–734. https://doi.org/10.21273/JASHS.130.5.729 573

Pathania, S., Itle, R. A., Chávez, C. R., Lema, L. F., Caballero-Serrano, V., Carrasco, J. C., & Chavez, D. J. (2022). Fruit Characterization of Prunus serotina subsp. Capuli. Horticulturae, 8(9), 838. https://doi.org/10.3390/horticulturae8090838

Petitpierre, B., Pairon, M., Broennimann, O., Jacquemart, A. L., Guisan, A., & Besnard, G. (2009). Plastid DNA variation in Prunus serotina var. Serotina (Rosaceae), a North American tree invading Europe. European Journal of Forest Research, 128(5), 431–436. https://doi.org/10.1007/s10342- 579 009-0287-1

Potì, F., Santi, D., Spaggiari, G., Zimetti, F., & Zanotti, I. (2019). Polyphenol Health Effects on Cardiovascular and Neurodegenerative Disorders: A Review and Meta-Analysis. International Journal of Molecular Sciences, 20(2), 351. https://doi.org/10.3390/ijms20020351

Potter, D. (2011). Prunus. En C. Kole (Ed.), Wild Crop Relatives: Genomic and Breeding Resources (pp. 129–145). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-16057-8_7

Ramalakshmi, K., Subhapriya, P., Ananthavalli, K., Sarada, K., & Shanmugapriya, D. (2021). Impact 586 of cooking on nutrients in selected vegetables. International Journal of Engineering Research and Application, 11(2), 31-35, https://doi.org/10.9790/9622-1102023135].

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Reynoso-Camacho, R., Ramos-Gómez, M., Loarca-Piña, G., Guevara-González, R., & Torres Pacheco, I. (2006). Bioactive components in common beans (Phaseolus vulgaris L.). 593 https://www.semanticscholar.org/paper/Bioactive-components-in-common-beans-(Phaseolus594 Reynoso-Camacho-Ramos-G%C3%B3mez/6f298346344c2ea4b0c585e7c7b3c1df9f23f2ab

Román-Cortés, N. R., García-Mateos, Ma. del R., Castillo-González, A. Ma., Sahagún-Castellanos, J., & Jiménez-Arellanes, Ma. A. (2018). Características nutricionales y nutracéuticas de hortalizas de uso ancestral en México. Revista Fitotecnia Mexicana, 41(3), 245–253. PUBLICACIÓN https://doi.org/10.35196/rfm.2018.3.245-253

SAS Institute Inc. (2002). SAS/STAT Software, Version 9.00 [Statistical Analysis System 9.0 for Windows].

SIAP. (2024). Sistema de Información Agroalimentaria de Consulta (Versión 2024) [Software]. Servicio de Información Agroalimentaria y Pesquera. Swain, E., Li, C. P., & Poulton, J. E. (1992). Development of the Potential for Cyanogenesis in Maturing Black Cherry (Prunus serotina Ehrh.) Fruits. Plant Physiology, 98(4), 1423–1428. https://doi.org/10.1104/pp.98.4.1423

Telichowska, A., Kobus-Cisowska, J., & Szulc, P. (2020). Phytopharmacological Possibilities of Bird 607 Cherry Prunus padus L. and Prunus serotina L. Species and Their Bioactive Phytochemicals. 608 Nutrients, 12(7), 1966. https://doi.org/10.3390/nu12071966 609

Toh, J. Y., Tan, V. M. H., Lim, P. C. Y., Lim, S. T., & Chong, M. F. F. (2013). Flavonoids from Fruit and Vegetables: A Focus on Cardiovascular Risk Factors. Current Atherosclerosis Reports, 15(12), 611. https://doi.org/10.1007/s11883-013-0368-y 612

Waterman, P. G., & Mole, S. (1994). Analysis of phenolic plant metabolites. Methods in Ecology. Blackwell Scientific Publications, Oxford. 238 p.

Yagmur, C., & Taskin, M. (2011). Study on changes in mineral content of plum (Prunus domestica) and strawberry (Fragaria×ananassa) during canning. The Indian Journal of Agricultural Sciences, 616 81(8), Article 8. https://epubs.icar.org.in/index.php/IJAgS/article/view/8424

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2025 Current Topics in Agronomic Science