Current Topics in Agronomic Science
Soil organic carbon loss in agricultural systems of Mexico due to climate change
ISSNe: 2954-4440
PDF - English
PDF - Spanish

Keywords

COS stocks
climate variability
agriculture
spatial modeling
degradation
COS reduction

How to Cite

López Teloxa, L. C., & Monterroso-Rivas, A. I. (2024). Soil organic carbon loss in agricultural systems of Mexico due to climate change. Current Topics in Agronomic Science, 4(2). https://doi.org/10.5154/r.ctas.2024.04.04

Abstract

Soil organic carbon (SOC) plays a key role in ecosystem health, influencing soil’s physical, chemical, and microbiological properties, such as water retention, fertility, and microbiome diversity. SOC modeling, using machine learning and remote sensing, enables the prediction of how agricultural practices and climate change affect its storage. This study aimed to model and project variations in SOC reserves in rainfed and irrigated agricultural soils in Mexico, under current conditions and future climate change scenarios. Therefore, models were developed to relate SOC to variables such as Lang’s index (precipitation and temperature), altitude, slope, bulk density, texture type, and soil depth. These models captured the land relief characteristics and their relationship with agricultural practices and SOC content in soils. The highest SOC levels were observed in irrigated agricultural systems. However, under climate change scenarios, SOC losses of up to 7 % are projected, along with temperature increases of up to 6 °C and precipitation increases of 12%. The reduction in SOC could increase greenhouse gas emissions and diminish the soil’s carbon storage capacity. This study highlights the importance of implementing sustainable management practices and promoting multidisciplinary research to mitigate adverse effects. Additionally, it demonstrates the potential for simulating SOC behavior and generating models useful for evaluating scenarios and supporting decision-making.

https://doi.org/10.5154/r.ctas.2024.04.04
PDF - English
PDF - Spanish

References

Abdoli, P., Khanmirzaei, A., Hamzeh, S., Rezaei, S., & Moghimi, S. (2023). Use of remote sensing data to predict soil organic carbon in some agricultural soils of Iran. Remote Sensing Applications: Society and Environment, 30, 100969. https://doi.org/10.1016/j.rsase.2023.100969

Arce-Romero, A., Monterroso-Rivas, A. I., Gómez-Díaz, J. D., Palacios- Mendoza, M. Á., Navarro-Salas, E. N., López-Blanco, J., & Conde-Álvarez, A. C. (2020). Crop yield simulations in Mexican agriculture for climate change adaptation. Atmosfera, 33(3), 215- 231. https://doi.org/10.20937/ATM.52430

Canaza, D., Calizaya, E., Chambi, W., Calizaya, F., Mindani, C., Cuentas, O., Caira, C., & Huacani, W. (2023). Spatial distribution of soil organic carbon in relation to land use, based on the weighted overlay technique in the high Andean Ecosystem of Puno-Peru. Sustainability, 15(13), 10316. https://doi.org/10.3390/su151310316

Chen, Q., Niu, B., Hu, Y., Luo, T., & Zhang, G. (2020). Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms. Science of the Total Environment, 714, 136787. https://doi.org/10.1016/j.scitotenv.2020.136787

Comisión Nacional del Agua (CONAGUA). (2021). Estadísticas agrícolas de los distritos de temporal tecnificado, año agrícola 2020-2021. CONAGUA. https://www.gob.mx/conagua/documentos/estadisticas-agricolas-de-los-distritos-de-temporal-tecnificado

Comisión Nacional de Zonas Áridas-Universidad Autónoma Chapingo (CONAZA-UACh). (2023). Informe nacional 2022 de acciones contra la desertificación, degradación de tierras y sequía en México. CONAZA-UACh.

Conde, C., Ferrer, R., & Orozco, S. (2006). Climate change and climate variability impacts on rainfed agricultural activities and possible adaptation measures. A Mexican case study. Atmósfera, 19(3), 181- 194. https://www.redalyc.org/pdf/565/56519303.pdf

da Cunha-Santino, M. B., & Bianchini, I. (2023). Reviewing the organic matter processing by wetlands. Acta Limnologica Brasiliensia, 35, e19. https://doi.org/10.1590/S2179-975X3423

de Jong, B., Cairns, M., Haggerty, P., Ramírez, N., Ochoa, S., Mendoza, J., González, M., & March, I. (1999). Land-use change and carbon flux between 1970s and 1990s in central highlands of Chiapas, Mexico. Environmental Management, 23(3), 373-385. https://doi.org/10.1007/s002679900193

Dionizio, E. A., Pimenta, F. M., Lima, L. B., & Costa, M. H. (2020). Carbon stocks and dynamics of different land uses on the Cerrado agricultural frontier. PLoS ONE, 15(11), e0241637. https://doi.org/10.1371/journal.pone.0241637

ESRI. (2020). ArcMap Desktop 10.8.1 [Software]. https://desktop.arcgis.com/es/arcmap/latest/get-started/installation-guide/installing-on-your-computer.htm

Flores-Delgadillo, L., Fedick, S. L., Solleiro-Rebolledo, E., Palacios-Mayorga, S., Ortega-Larrocea, P., Sedov, S., & Osuna-Ceja, E. (2011). A sustainable system of a traditional precision agriculture in a Maya homegarden: Soil quality aspects. Soil and Tillage Research, 113(2), 112-120. https://doi.org/10.1016/j.still.2011.03.001

Food and Agriculture Organization of the United Nations (FAO). (2020). The state of food and agriculture. Overcoming water challenges in agriculture. FAO. https://doi.org/10.4060/cb1447en

Frelih-Larsen, A., Riedel, A., Hobeika, M., Scheid, A., Gattinger, A., & Niether, W. (2022). Role of soils in climate change mitigation. German Environment Agency

Gómez, J. A., Guzmán, G., Toloza, A., Resch, C., García-Ruíz, R., & Mabit, L. (2020). Variation of soil organic carbon, stable isotopes, and soil quality indicators across an erosion-deposition catena in a historical Spanish olive orchard. Soil, 6(1), 179-194. https://doi.org/10.5194/soil-6-179-2020

González-Molina, L., Etchevers-Barra, J. D., & Hidalgo-Moreno, C. (2008). Carbono en suelos de ladera: factores que deben considerarse para determinar su cambio en el tiempo. Agrociencia, 42(7), 741-751. https://www.redalyc.org/articulo.oa?id=30211207001

Guo, Y., Zeng, Z., Wang, J., Zou, J., Shi, Z., & Chen, S. (2023). Research advances in mechanisms of climate change impacts on soil organic carbon dynamics. Environmental Research Letters 18(10), 103005. Institute of Physics. https://doi.org/10.1088/1748-9326/acfa12

Hateffard, F., Szatmári, G., & Novák, T. J. (2023). Applicability of machine learning models for predicting soil organic carbon content and bulk density under different soil conditions. Soil Science Annual, 74(1), 165879. https://doi.org/10.37501/soilsa/165879

Instituto Nacional de Ecología y Cambio Climático-Secretaría de Medio Ambiente y Recursos Naturales (INECC-SEMARNAT). (2015). Primer Informe Bienal de Actualización ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. INECC-SEMARNAT https://www.gob.mx/inecc/documentos/primer-informe-bienal-de-actualizacion-ante-la-convencion-marco-de-las-naciones-unidas-sobre-el-cambio-climatico

Instituto Nacional de Estadística y Geografía (INEGI). (2001). Conjunto de datos vectoriales fisiográficos. Continuo nacional serie I. Provincias fisiográficas [Conjunto de datos]. INEGI https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825267575

Instituto Nacional de Estadística y Geografía (INEGI). (2007). Censo agrícola, ganadero y forestal 2007. INEGI. https://www.inegi.org.mx/programas/cagf/2007/default.html#Tabulados

Instituto Nacional de Estadística y Geografía (INEGI). (2013a). Conjunto de datos de perfiles de suelos. Escala 1:250 000. Serie II. INEGI. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825266707

Instituto Nacional de Estadística y Geografía (INEGI). (2013b). Continuo de elevaciones mexicano y modelos digitales de elevación. INEGI. https://www.inegi.org.mx/app/geo2/elevacionesmex/

Instituto Nacional de Estadística y Geografía (INEGI). (2023). Resultados definitivos del censo agropecuario 2022. INEGI. https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2023/CA_Def/CA_Def2022.pdf

Instituto Nacional de Estadística y Geografía (INEGI). (2024). Estadísticas a propósito del día mundial del agua: desafíos y oportunidades en el uso agrícola en México. INEGI. https://www.inegi.org.mx/app/saladeprensa/noticia.html?id=8942

Intergovernmental Panel on Climate Change (IPCC). (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC. https://www.ipcc-nggip.iges.or.jp/public/2006gl/

Intergovernmental Panel on Climate Change (IPCC). (2022). Climate change 2022: Impacts, adaptation and vulnerability. Cambridge University Press. https://doi.org/10.1017/9781009325844

Jia, Y., Kuzyakov, Y., Wang, G., Tan, W., Zhu, B., & Feng, X. (2020). Temperature sensitivity of decomposition of soil organic matter fractions increases with their turnover time. Land Degradation and Development, 31(5), 632-645. https://doi.org/10.1002/ldr.3477

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623-1627. https://doi.org/10.1126/ science.1097396

Li, J. (2017). Assessing the accuracy of predictive models for numerical data: Not r nor r2, why not? Then what?. PLoS ONE, 12(8), e0183250. https://doi.org/10.1371/journal.pone.0183250

Liu, G., Sun, J., Xie, P., Guo, C., Zhu, K., & Tian, K. (2024a). Climate warming enhances microbial network complexity by increasing bacterial diversity and fungal interaction strength in litter decomposition. Science of the Total Environment, 908, 168444. https://doi.org/10.1016/j.scitotenv.2023.168444

Liu, X., Tian, Y., Heinzle, J., Salas, E., Kwatcho-Kengdo, S., Borken, W., Schindlbacher, A., & Wanek, W. (2024b). Long-term soil warming decreases soil microbial necromass carbon by adversely affecting its production and decomposition. Global Change Biology, 30(6), e17379. https://doi.org/10.1111/gcb.17379

Liu, Z., Zhang, Y., Fa, K., Qin, S., & She, W. (2017). Rainfall pulses modify soil carbon emission in a semiarid desert. Catena, 155, 147-155. https://doi.org/10.1016/j.catena.2017.03.011

Luković, J., Burić, D., Mihajlović, J., & Pejović, M. (2024). Spatial and temporal variations of aridity-humidity indices in Montenegro. Theoretical and Applied Climatology, 155(6), 4553-4566. https://doi.org/10.1007/s00704-024-04893-y

Meena, R. S., Singh, A. K., Jatav, S. S., Rai, S., Pradhan, G., Kumar, S., Mina, K. K., & Jhariya, M. K. (2024). Significance of soil organic carbon for regenerative agriculture and ecosystem services. In K. Singh, M. C. Ribeiro, & Ö. Calicioglu (Eds.), Biodiversity and Bioeconomy (pp. 217-240). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-95482-2.00010-9

Mendoza, J., Karltun, E., & Olsson, M. (2003). Estimations of amounts of soil organic carbon and fine root carbon in land use and land cover classes, and soil types of Chiapas highlands, Mexico. Forest Ecology and Management, 177(1-3), 191-206. https://doi.org/10.1016/S0378-1127(02)00439-5

Monterroso-Rivas, A. I., Conde-Álvarez, A. C., Pérez-Damian, J. L., López- Blanco, J., Gaytan-Dimas, M., & Gómez-Díaz, J. D. (2018). Multi-temporal assessment of vulnerability to climate change: insights from the agricultural sector in Mexico. Climatic Change, 147(3-4), 457-473. https://doi.org/10.1007/s10584-018-2157-7

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons, Inc.

Mu, Y., Ye, R., Xiong, K., Li, Y., Liu, Z., Long, Y., Cai, L., & Zhou, Q. (2024). Response of soil organic carbon to land-use change after farmland abandonment in the karst desertification control. Plant and Soil, 501, 595-610. https://doi.org/10.1007/s11104-024-06541-w

Mundada, S., Jain, P., & Kumar, N. (2024). Prediction of soil organic carbon using machine learning techniques and geospatial data for sustainable agriculture. Journal of Intelligent & Fuzzy Systems, 1-14. https://doi.org/10.3233/JIFS-240493

Naba, C., Ishidaira, H., Magome, J., & Souma, K. (2024). Exploring the potential of soil and water conservation measures for climate resilience in Burkina Faso. Sustainability, 16(18), 7995. https://doi.org/10.3390/su16187995

Page, K. L., Dang, Y. P., & Dalal, R. C. (2020). The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Frontiers in Sustainable Food Systems, 4(31), 1-17. https://doi.org/10.3389/fsufs.2020.00031

Paz, F., Covaleda, S., Hidalgo, C., Etchevers, J., & Matus, F. (2016). Modelación simple y operativa de la distribución del carbono orgánico por fracciones físicas en los suelos. Terra Latinoamericana, 34(3), 321-337. https://www.terralatinoamericana.org.mx/index.php/terra/article/view/152

Paz, F., & Etchevers, J. (2016). Distribución a profundidad del carbono orgánico en los suelos de México. Terra Latinoamericana, 34(3), 339-355. https://www.terralatinoamericana.org.mx/index.php/%20terra/article/view/153/132

Poeplau, C., & Dechow, R. (2023). The legacy of one hundred years of climate change for organic carbon stocks in global agricultural topsoils. Scientific Reports, 13(1), 7483. https://doi.org/10.1038/s41598-023-34753-0

Posit team. (2023). RStudio: Integrated Development Environment for R [Software]. http://www.posit.co/

Qiu, L., Zhu, J., Zhu, Y., Hong, Y., Wang, K., & Deng, J. (2013). Land use changes induced soil organic carbon variations in agricultural soils of Fuyang County, China. Journal of Soils and Sediments, 13(6), 981- 988. https://doi.org/10.1007/s11368-013-0684-4

Rashiq, A., Kumar, V., & Prakash, O. (2024). A spatiotemporal assessment of the precipitation variability and pattern, and an evaluation of the predictive reliability, of global climate models over Bihar. Hydrology, 11(4), 50. https://doi.org/10.3390/hydrology11040050

Secretaría de Medio Ambiente y Recursos Naturales-Instituto Nacional de Ecología y Cambio Climático (SEMARNAT-INECC). (2018). Sexta Comunicación Nacional y Segundo Informe Bienal de Actualización ante la Convención Marco de las Naciones Unidas sobre el Cambio climático. SEMARNAT-INECC. https://www4.unfccc.int/sites/SubmissionsStaging/NationalReports/Documents/69287541_Mexico-BUR2-NC6-2-MEX_6aNC_Revisada.pdf

Shang, C., & Tiessen, H. (2003). Soil organic C sequestration and stabilization in karstic soils of Yucatan. Biogeochemistry, 62(2), 177- 196. https://doi.org/10.1023/A:1021123728639

Servicio de Información Agroalimentaria y Pesquera (SIAP). (2023). Anuario estadístico de la producción agrícola. SIAP. https://nube.siap.gob.mx/cierreagricola/

Smith, P., & Olesen, J. E. (2010). Synergies between the mitigation of, and adaptation to, climate change in agriculture. Journal of Agricultural Science, 148(5), 543-552. https://doi.org/10.1017/S0021859610000341

Stolbovoy, V. S., & Fil, P. P. (2023). Assessment of the carbon content in agricultural soils of the European Russia for climate projects. Izvestiâ Rossijskoj Akademii Nauk. Seriâ GeografičEskaâ, 87(4), 568- 583. https://doi.org/10.31857/S2587556623040143

Vannier, C., Cochrane, T. A., Reza, P. Z., & Bellamy, L. (2022). An analysis of agricultural systems modelling approaches and examples to support future policy development under disruptive changes in New Zealand. Applied Sciences, 12(5), 2746. https://doi.org/10.3390/app12052746

Wang, S., Zhang, X., Adhikari, K., Wang, Z., Shi, D., Jin, X., & Qian, F. (2023). Impact of future climate warming on soil organic carbon stocks in Inner Mongolia, China. Ecological Indicators, 156, 111208. https://doi.org/10.1016/j.ecolind.2023.111208

Wang, X., Chen, F., Zeng, J., Wang, Z., Feng, Y., Wang, X., Ren, C., Yang, G., Zhong, Z., & Han, X. (2025). Divergent responses of soil glomalin and microbial necromass to precipitation reduction: New perspectives from soil aggregates and multi-trophic networks. Soil Biology and Biochemistry, 200, 109638. https://doi.org/10.1016/j.soilbio.2024.109638

Wheeler, T., & von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508-513. https://doi.org/10.1126/science.1239402

Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin- Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J., & Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 333, 149-162. https://doi.org/10.1016/j.geoderma.2018.07.026

WorldClim. (2024, January 23). WorldClim - Global Climate Data. https://worldclim.org/

Zayani, H., Fouad, Y., Michot, D., Kassouk, Z., Baghdadi, N., Vaudour, E., Lili-Chabaane, Z., & Walter, C. (2023). Using machine-learning algorithms to predict soil organic carbon content from combined remote sensing imagery and laboratory Vis-NIR spectral datasets. Remote Sensing, 15(17), 4264. https://doi.org/10.3390/rs15174264

Zhao, F., Wu, Y., Hui, J., Sivakumar, B., Meng, X., & Liu, S. (2021). Projected soil organic carbon loss in response to climate warming and soil water content in a loess watershed. Carbon Balance and Management, 16(1), 24. https://doi.org/10.1186/s13021-021-00187-2

Zsolt, S., Tállai, M., Kincses, I., László, Z., Kátai, J., & Vágó, I. (2020). Effect of various soil cultivation methods on some microbial soil properties. DRC Sustainable Future: Journal of Environment, Agriculture, and Energy, 1(1), 14-20.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2024 Current Topics in Agronomic Science