Revista Chapingo Serie Zonas Áridas
Cooling Holstein cows and heifers before calving during the summer: behavioral measures related to animal welfare
ISSNe: 2007-526X
PDF

Keywords

Cooling
animal
welfare
dairy cattle
dry period

How to Cite

Mejía Lastra, A. J., Avendaño Reyes, L., Vicente Pérez, A., Macías Cruz, U., Correa Calderón, A., Olivares Pérez, J., … Rojas Hernández, S. (2022). Cooling Holstein cows and heifers before calving during the summer: behavioral measures related to animal welfare. Revista Chapingo Serie Zonas Áridas, 21(1). https://doi.org/10.5154/r.rchsza.2020.11.04

Abstract

The objective of the study was to compare behaviors related to animal welfare and electrolyte levels between multiparous cows and primiparous heifers under an arid environment in a cooling system for 30 d before calving. Cows and heifers were hosted in different pens with shade and a cooling system. The behavior was monitored through visual sweep analysis and included rest and feeding episodes. Blood samples were collected from eleven cows and eleven heifers to determine electrolytes in serum. The frequency of animals in each activity was recorded in percentages, and means were involved in the MIXED procedure of the Statistical Analysis System for comparison. In the mornings, heifers remained standing in the shade foraging, while cows preferred lying down in the breeze and ruminating in the morning (P < 0.05). Cows and heifers similarly maintained their feeding and rumination episodes (P > 0.05). In the afternoon, more heifers than cows resorted to drinking water (P > 0.05). Electrolytes concentrations were similar (P > 0.05). It was concluded that Holstein cows and heifers expressed slight differences in resting and feeding behavior, but blood plasma electrolyte concentrations remained similar and normal.

https://doi.org/10.5154/r.rchsza.2020.11.04
PDF

References

Allen, J. D., Hall, L. W., Collier, R. J., y Smith, J. F. (2015). Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. J. Dairy Sci., 98: 118-127. DOI: https://doi.org/10.3168/jds.2013-7704

Andersson, M. (2009). The importance of shade for dairy cattle in Sweden. Second cycle, A2E. Uppsala: SLU, Dept. Animal Nutrition and Management, 1-39. In line: http://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-6-72.

Angrecka, S., y Herbut, P. (2017). Eligibility of lying boxes at different THI levels in a freestall barn. Ann. Anim. Sci., 7 (1) 257-269. DOI: https://doi.org/10.1515/aoas-2016-0053.

Anzures-Olvera, F.; Macías-Cruz, U.; Álvarez-Valenzuela, F. D.; Correa-Calderón, A.; Díaz-Molina, R.; HernándezRivera, J. A., y Avendaño-Reyes, L. (2015). Efecto de época del año (verano vs invierno) en variables fisiológicas, producción de leche y capacidad antioxidante de vacas Holstein en una zona árida del noroeste de México. Arch. Med. Vet., 47:15-20. DOI: https://doi.org/10.4067/S0301-732X2015000100004.

Arias, R. A., y Mader, T. L. (2007). Environmental factors affecting daily water intake on cattle finished in feedlot. Master Thesis, University of Nebraska-Lincoln, Nebraska, USA, 47-49. In line: https://digitalcommons. unl.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1070&context=animalscinbcr.

Arias, R. A.; Mader, T. L., y Escobar, P. C. (2008). Factores climáticos que afectan el desempeño productivo del ganado bovino de carne y leche. Arch. Med. Vet., 40, 7-22. DOI: https://doi.org/10.4067/S0301-732X2008000100002.

Armstrong, D. V. (1994). Heat Stress Interaction With Shade and Cooling. J.Dairy Sci., 77 (7): 2044-2205. DOI: https://doi.org/10.3168/jds.S0022-0302(94)77149-6.

Avendaño-Reyes, L.; Álvarez, V. F. D.; Correa, C. A.; Saucedo, Q. J. S.; Rivera, A. F.; Verdugo, Z. F. J.; Aréchiga, F. C. F., y Robinson, P. H. (2007). Evaluación de un sistema de enfriamiento aplicado en el periodo seco de ganado lechero durante el verano. Tec. Pec. Méx., 45(2): 209-225.

Barragán-Hernández, W. A.; Mahecha-Ledesma, L., y CajasGirón, Y. S. (2015). Variables fisiológicas-metabólicas de estrés calórico en vacas bajo silvopastoreo y pradera sin árboles. Agronomía Mesoamericana 26: 211-223.

Baumgard, L. H., y Rhoads, Jr. R. P. (2013). Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci., 1 (7):1-27. DOI:10.1146/annurevanimal-031412-103644.

Bernabucci, U.; Biffani, S.; Buggiotti, L.; Vitali, A.; Lacetera, N., y Nardone, A. (2014). The effects of heat stress in Italian Holstein dairy cattle. J. Dairy Sci., 97: 471-486. DOI: 10.3168/jds.2013-6611.

Brscic, M.; Cozzi, G.; Lora, I.; Stefani, A. L.; Contiero, B.; Ravarotto, L., y Gottardo, F. (2015). Short communication: Reference limits for blood analytes in Holstein late-pregnant heifers and dry cows: Effects of parity, days relative to calving, and season. J. Dairy Sci., 98: 7886-7892. DOI: https://doi.org/10.3168/jds.2015-9345

Collier, R. J., y Zimbelman R. B. (2007). Heat stress effects on cattle: what we know and what we don’t know. In: Proc. of the Southwest Nutrition and Management Conference, The University of Arizona, Tucson, February 23rd. https://cals.arizona.edu/extension/dairy/az_nm_newsletter/2007/june.pdf (consultado, 06 octubre de 2020).

Collier, R. J.; Beede, D. K.; Thatcher,W. W.; Israel, L. A., y Wilcox. C. J. (1982). Influences of environment and its modification on dairy animal health and production. J. Dairy Sci. 65: 2213-2227. https://doi.org/10.3168/jds.s0022-0302(82)82484-3

Damián, M. A.; Aguirre, V.; Orihuela A.; Pedernera, M.; Rojas, S., y Olivares, J. (2020). Tiempo de manejo y algunas conductas relacionadas con el estrés al manejar grupos grandes o reducidos de ganado en mangas rectas. Rev. Mex. Cienc. Pecu., 11:3: 905-913. https://doi.org/10.22319/rmcp.v11i3.5127

Do Amaral, B. C.; Connor, E. E., Tao, S.; Hayen, M. J.; Bubolz, J. W., y Dahl, G. E. (2011). Heat stress abatement during the dry period influences metabolic gene expression and improves immune status in the transition period of dairy cows. J. Dairy Sci., 94 :86-96. DOI: https://doi.org/10.3168/jds.2009-3004.

Do Amaral, B. C.; Connor, E. E.; Tao, S.; Hayen, J.; Bubolz, J., y Dahl, G. E. (2009). Heat-stress abatement during the dry period: Does cooling improve transition into lactation? J. Dairy Sci., 92: 5988–5999. DOI: https://doi.org/10.3168/jds.2009-2343.

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de la República Mexicana). 5° Edición México, D. F. Instituto de Geografía, Universidad Nacional Autónoma de México.

Grummer, R. R.; Mashek, D. G., y Hayirli, A. (2004). Dry matter intake and energy balance in the transition period. Vet Clin. North. Am. Food Anim., 20: 447-470. DOI: https://doi.org/10.1016/j.cvfa.2004.06.0

Hahn, G. L. (1999). Dynamic responses of catle to thermal heat loads. Journal of animal science. American society of animal science. J. Anim. Sci. 77:10-20. Doi: https://doi.org/10.2527/1997.77suppl_210x.

Herbut, P., y Angrecka, S. (2018). Relationship between THI level and dairy cows behaviour during summer period. Italian J. Anim. Sci., 17 (1): 226-233. DOI: https://doi.org/10.1080/1828051X.2017.1333892.

Hill, W. R.; Wyse, A. G., y Anderson, M. (2006). Relaciones térmicas. Fisiología animal. Madrid. Editorial Médica Panamericana, 221-280.

Holter, J. B.; West, J. W., y McGilliard, M. L. (1997). Predicting ad libitum dry matter intake and yield of Holstein cows. J. Dairy Sci., 80(9): 2188-2199. DOI: https://doi.org/10.3168/jds.S0022-0302(97)76167-8.

Horowitz, M. (2002). From molecular and cellular to integrative heat defence during exposure to chronic heat. Comparative Biochemistry and Physiology Part A, 131, 475-483.

Janovick, N. A., y Drackley, J. K. (2010). Prepartum dietary management of energy intake affects postpartum intake and lactation performance by primiparous and multiparous Holstein cows. J. Dairy Sci., 93: 3086- 3102. DOI: https://doi.org/10.3168/jds.2009-265.

Karimi, M. T.; Ghorbani, G. R.; Kargar, S., y Drackley, J. K. (2015). Late-gestation heat stress abatement on performance and behavior of Holstein dairy cows. J. Dairy Sci. , 98 (10): 6865−6875. DOI: https://doi.org/10.3168/jds.2014-9281.

Kozłowski, J.; Konarzewski, M., y Czarnoleski, M. (2020). Coevolution of body size and metabolic rate in vertebrates: a life-history perspective. Biol. Rev., 95: 1393-1417. doi: https://doi.org/10.1111/brv.12615

Li, J.; Narayanan, V.; Kebreab, E.; Dikmen, S., y Fadel, J. G. (2021). A mechanistic thermal balance model of dairy cattle. Biosystems Engineering, 209: 256-270. https://doi.org/10.1016/j.biosystemseng.2021.06.009

Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M. S., y Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci., 130: 57-69. DOI: https://doi.org/10.1016/j.livsci.2010.02.011.

Neave, H. W.; Lomb, J.; von Keyserlingk, M. A.G.; BehnamShabahang, A., y Weary, D. M. (2017). Parity differences in the behavior of transition dairy cows. J. Dairy Sci., 100: 548-561. DOI: https://doi.org/10.3168/jds.2016-10987.

Nordlund, K. V.; Strassburg, P. ; Bennett, T. B.; Oetzel, G. R., y Cook, N. B. (2019). Thermodynamics of standing and lying behavior in lactating dairy cows in freestall and parlor holding pens during conditions of heat stress. J. Dairy Sci., 102. DOI https://doi.org/10.3168/jds.2018-15891.

Paudel, T. P.; Acharya, B. R.; Karki, D. B., y Shrestha, B. S. (2018). Effect of heat stress on crossbred dairy cattle in tropical Nepal: Impact on blood parameters. J. Agriculture and Natural Resources, 1(1): 223-230. DOI: https://doi.org/10.3126/janr.v1i1.22237.

Polsky, L., y Von Keyserlingk, M. A.G. (2017). Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci., 100: 8645–8657. DOI: https://doi.org/10.3168/jds.2017-12651.

Robinson, N. E. (2014). Sección IX: Homeostasis. Fisiología Veterinaria 5a Edición. Cunningham, J. G y Klein, B. G. Barcelona. Editorial Elsevier. 2014., 559-568.

SAS (2004). SAS/STAT. User’s guide statistics released 9.1, 2nd Ed. SAS Institute. Inc. Cary, NC, USA. 5136 p.

Servicio Meteorológico Nacional (SMN). (2010). Normales Climatológicas por Estado. Infromación climatológica. Servicio Meteorológico Nacional (SMN) Mexicali, En línea: https://smn.conagua.gob.mx/tools/RESOURCES/Normales5110/NORMAL02034.TXT.

Silanikove, N. (2000). Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci., 67: 1-18. DOI: https://doi.org/10.1016/S0301-6226(00)00162-7.

Silanikove, N.; Maltz, E.; Halevi, A., y Shinder, D. (1997). Metabolism of water, sodium, potassium, and chlorine by high yielding dairy cows at the onset of lactation. J. Dairy Sci., 80: 949-956. DOI: https://doi.org/10.3168/jds.S0022-0302(97)76019-3.

Stone, A. E., Jones, B. W., Becker, C. A., y Bewley, J. M. (2017). Influence of breed, milk yield, and temperaturehumidity index on dairy cow lying time, neck activiry, reticulorumen temperature, and rumination behav ior. J. Dairy Sci., 100 (3): 2395-2403. DOI: https://doi.org/10.3168/jds.2016-11607.

Tao, S., y Dahl, G. E. (2013). Invited review: Heat stress impacts during the dry period on dry cows and their calves. J. Dairy Sci., 96: 4079-4093. DOI: https://doi.org/10.3168/jds.2012-6278.

Tao, S.; Dahl, G. E.; Laporta, J.; Bernard, J. K.; Orellana, R. R.M., y Marins, T. N. (2019). PHYSIOLOGY SYMPOSIUM: Effects of heat stress during late gestation on the dam and its calf. J. Anim. Sci., 97(5): 2245-2257. DOI: https://doi.org/10.1093/jas/skz061.

Thompson, I. M.; Tao, S.; Monteiro, A. P.; Jeong, K. C., y Dahl, G. E. (2014). Effect of cooling during the dry period on immune response after Streptococcus uberis intramammary infection challenge of dairy cows. J. Dairy Sci., 97 (12): 7426-7436. DOI: https://doi.org/10.3168/jds.2013-7621.

West, J. C. (2003). Effects of heat stress on production in dairy cattle. J. Dairy Sci., 86: 2131-2144.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Revista Chapingo Serie Zonas Áridas