Revista Chapingo Serie Zonas Áridas
Increase of the number of broods of Fall Armyworm (Spodoptera frugiperda) as an indicator of global warming
ISSNe: 2007-526X
PDF

Keywords

Maize
climate change implications
increase in generations
growing degree days

How to Cite

Ramírez-Cabral, N., Medina-García, G., & Kumar, L. (2020). Increase of the number of broods of Fall Armyworm (Spodoptera frugiperda) as an indicator of global warming. Revista Chapingo Serie Zonas Áridas, 19(1), 1–16. https://doi.org/10.5154/r.rchsza.2020.11.01

Abstract

Yield losses are closely related to the increased pests on crops. Higher temperatures can lead to an earlier establishment, shorter life cycles, more generations and spread in a geographic range. Corn is an important economic crop worldwide. One of its main pests, Spodoptera frugiperda (fall armyworm, FAW) is causing losses of millions of dollars. Maps of climatic scenarios show an increase in the number of FAW generations for the study area. While currently three and four generations are the most common, by 2060 four and five generations can occur over most of the state area. In some areas, seven generations can occur within a season; currently, seven generations do not occur in the state but six generations can occur in very small areas. These results show that more days with warm temperatures in a breeding season can lead to a decrease in the FAW life cycle duration, enabling more broods per season. This increase can generate more pressure in agricultural areas with negative economic and social impacts on the corn supply in the future. The results of this modelling could be used to perform mitigation and adaptation policies to guarantee food security under a changing global climate

https://doi.org/10.5154/r.rchsza.2020.11.01
PDF

References

Altermatt, F. (2010). Climatic warming increases voltinism in European butterflies and moths. Proceedings of the Royal Society B: Biological Sciences 277, 1281-1287.

Ayres, M. P., & Lombardero, M. J. (2000). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci. Total Environ. 262, 263-286.

Baker, A., & Zahniser, S. (2006). Ethanol reshapes the corn market. Amber Waves 4, 30-35.

Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M.,…, Whittaker, J. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol. 8, 1-16.

Barfield, C., & Jones, J., (1979). Research needs for modeling pest management systems involving defoliators in agronomic crop systems. Fla. Entomol., 98-114.

Blanchet, F. G., Legendre, P., & Borcard, D., (2008). Forward selection of explanatory variables. Ecology 89, 2623-2632.

Bradshaw, W. E., & Holzapfel, C. M. (2006). Evolutionary response to rapid climate change. Science 312, 1477-1478.

Brown, W. L., Zuber, M. S., Darrah, L. L., & Glover, D. V. (1985). Origin, adaptation and types of corn. In: Creech, R.G., Fleming, A.A., Schertz, K.F., Troyer, A.F. (Eds.), National Corn Handbook. Iowa State University, Ames Iowa.

Cannon, R. J. (1998). The implications of predicted climate change for insect pests in the UK, with emphasis on non–indigenous species. Global Change Biol. 4, 785-796.

Casmuz, A., Juárez, M. L., Socías, M. G., Murúa, M. G., Prieto, S., Medina, S.,…, Gastaminza, G. (2010). Revisión de los hospederos del gusano cogollero del maíz, Spodoptera frugiperda (Lepidoptera: Noctuidae). Rev.Soc. Entomol. Argent. 69, 209-231.

Coope, G. (1970). Interpretations of Quaternary Insect Fossils. Annu. Rev. Entomol. 15, 97-121.

Crozier, L., & Dwyer, G. (2006). Combining population–dynamic and ecophysiological models to predict climate–induced insect range shifts. The American Naturalist 167, 853-866.

Dewar, R., & Watt, A. (1992). Predicted changes in the synchrony of larval emergence and budburst under climatic warming. Oecologia 89, 557-559.

Diffenbaugh, N. S., Krupke, C. H., White, M. A., & Alexander, C. E. (2008). Global warming presents new challenges for maize pest management. Environmental Research Letters 3, 044007.

Eastman, J. (2006). IDRISI v 15.1. IDRISI Andes. Guide to GIS and image processing 1.

FAO. (1992). Maize in human nutrition. http://www.fao.org/docrep/t0395e/T0395E00.htm#Contents.

FAOSTAT, F. (2014). Agriculture Organization of the United Nations. Statistical database, http://faostat3.fao.org/home/E.

Focardi, S. M., & Fabozzi, F. J. (2004). The mathematics of financial modeling and investment management.

John Wiley & Sons, Hoboken, New Jersey. Fraisse, C., Breuer, N., Zierden, D., Bellow, J., Paz, J., Cabrera, V.,…, Hoogenboom, G. (2006). AgClimate: A climate forecast information system for agricultural risk management in the southeastern USA. Comput. Electron. Agric. 53, 13-27.

Fuhrer, J. (2003). Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric., Ecosyst. Environ. 97, 1-20.

García, N. G., Tarango, R. S. H. (2009). Manejo biorracional del gusano cogollero en maíz. Centro de Investigacion Regional Norte Centro, Campo Experimental Delicias.

Hernández, J. L. M., López, E. C. B., Garza, E. G., & Mayek, N. P. (2008). Spatial distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize landraces grown in Colima, México. Int. J. Trop. Insect Sci. 28, 126-129.

IPCC. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M.M., Miller, H.L. (Eds.). Cambridge University Press, Cambridge, p. 996.

IPCC. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., White, L.L. (Eds.), Cambridge, United Kingdom and New York, NY, USA,, p. 1132.

Karuppaiah, V., & Sujayanad, G. (2012). Impact of climate change on population dynamics of insect pests. World Journal of Agricultural Sciences 8, 240-246.

Maes, D., Titeux, N., Hortal, J., Anselin, A., Decleer, K., De Knijf, G.,…, Luoto, M. (2010). Predicted insect diversity declines under climate change in an already impoverished region. J. Insect Conserv. 14, 485-498.

Magaña, V., & Caetano, E. (2007). Pronóstico climático estacional regionalizado para la República Mexicana como elemento para la reducción de riesgo, para la identificación de opciones de adaptación al cambio climático y para la alimentación del sistema: cambio climático por estado y por sector. Dirección General de Investigación sobre Cambio Climático, SEMARNATINE. SEMARNAT-INE.

McMaster, G. S., & Wilhelm, W. (1997). Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology 87, 291-300.

Medina, G. G., Cabañas, B. C., Ruiz Corral, J. A., Madero, J. T., Rubio, S. D., Rumayor, A. R.,…, Bravo, A. L. (2003). Potencial productivo de especies agrícolas en el estado de Zacatecas. INIFAP, Centro de Investigación Regional Norte Centro, Campo Experimental Zacatecas, Mexico.

Medina, G. G., Ruíz, C. J. A., Ramírez, L. M. R., & Díaz, P. G. (2011). Efecto del cambio climático en la acumulación de frío en la región manzanera de Chihuahua. Revista Mexicana de Ciencias Agrícolas 2, 251-263.

Medina, G. G., & Ruiz, J. A. C. (2004). Estadísticas climatológicas básicas del estado de Zacatecas (Período 1961-2003). INIFAP, Centro de Investigacion Regional Norte Centro, Campo Experimental Zacatecas.

Morin, X., & Thuiller, W. (2009). Comparing niche-and processbased models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90, 1301-1313.

O’Day, M. H., Becker, A., Keaster, A. J., Kabrick, L. R., & Steffey, K. L. (1998). Corn insect pests: A diagnostic guide. MU Extension, University of Missouri Columbia.

Parry, M., Porter, J., & Carter, T. (1990). Agriculture: climatic change and its implications. Trends Ecol. Evol. 5, 318-322.

Patterson, D., Westbrook, J., Joyce, R., Lingren, P., & Rogasik, J. (1999). Weeds, insects, and diseases. Clim. Change 43, 711-727.

Pollard, E., Moss, D., & Yates, T. (1995). Population trends of common British butterflies at monitored sites. J. Appl. Ecol., 9-16.

Porter, J., Parry, M., & Carter, T. (1991). The potential effects of climatic change on agricultural insect pests. Agricultural and Forest Meteorology 57, 221-240.

Ramirez, G. L., Bravo, M. H., & Llanderal, C. C. (1987). Desarrollo de Spodoptera frugiperda (J.E. Smith) (lepidoptera: Noctuidae) bajo diferentes condiciones de temperatura y humedad. Agrociencia 67, 161-171.

Randall, M. G. M. (1986). The predation of predispersed Juncus squarrosus seeds by Coleophora alticolella (Lepidoptera) larvae over a range of altitudes in northern England. Oecologia 69, 460-465.

Rosenzweig, C., Iglesias, A., Yang, X., Epstein, P. R., & Chivian, E. (2001). Climate change and extreme weather events; implications for food production, plant diseases, and pests. Global Change Hum. Health 2, 90-104.

Ruiz, C., Medina, G., Manríquez, O., & Ramírez, D. (2010). Evaluación de la vulnerabilidad y propuestas de medidas de adaptación a nivel regional de algunos

cultivos básicos y frutales ante escenarios de cambio climático. Informe final proyecto INIFAP-INE. Guadalajara, Jalisco, México.

Ruiz, C. J. A., Sánchez, G. J. d J., Hernández, C. J. M., Willcox, M. C., Ramírez, O. G.,…, González, E. D. R., (2013). Identificación de razas mexicanas de maíz adaptadas a condiciones deficientes de humedad mediante datos biogeográficos. Revista Mexicana de Ciencias Agrícolas 4, 829-842.

SAS. (2002). User Guide. Statistical Analysis System. Inc. Cary, NC.

Saunders, D. S. (2002). Insect clocks. Elsevier.

Simmons, A. M. (1993). Effects of constant and fluctuating temperatures and humidities on the survival of Spodoptera frugiperda pupae (Lepidoptera: Noctuidae). Fla. Entomol., 333-340.

Sparks, A. N. (1979). A review of the biology of the Fall Armyworm. The Florida Entomologist 62, 82-87.

Sparks, T. H., Dennis, R. L., Croxton, P. J., & Cade, M. (2007). Increased migration of Lepidoptera linked to climate change. Eur. J. Entomol. 104, 139-143.

Suárez, R. F., Chávez, L. A. M., & Mariscal, A. G. (2013). Importancia de los maíces nativos de México en la dieta nacional. Una revisión indispensable. Revista Fitotecnia Mexicana 36, 275-283.

Tauber, M. J., Tauber, C. A., & Shinzo, M. (1986). Seasonal Adaptations of Insects. Oxford University Press.

Turner, R., Song, Y. H., & Uhm, K. B. (1999). Numerical model simulations of brown planthopper Nilaparvata lugens and white-backed planthopper Sogatella furcifera (Hemiptera: Delphacidae) migration. Bull. Entomol. Res. 89, 557-568.

Valdez, T. J. B., Soto, L. F., Osuna, E. T., & Báez, S. M. A. (2012). Modelos de predicción fenológica para maíz blanco (Zea mays L.) y gusano cogollero (Spodoptera frugiperda JE Smith). Agrociencia 46, 399-410.

Valdivieso, L., & Núñez, E. (1984). Plagas del maíz y sus enemigos naturales. INIPA, CICIU, IICA.

van Asch, M., & Visser, M. E. (2007). Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu. Rev. Entomol. 52, 37-55.

Vickery, R. A. (1929). Studies on the fall army worm in the Gulf Coast district of Texas. United States Department of Agriculture, Economic Research Service, p. 63.

Watt, A., Ward, L., & Eversham, B. (1990). The greenhouse effect and terrestrial ecosystems of the UK. Invertebrates. HMSO Publication Centre.

Whittaker, J. B., & Tribe, N. (1996). An altitudinal transect as an indicator of responses of a spittlebug (Auchenorrhynchaz cercopidae) to climate change. Eur. J. Entomol. 93, 319-324.

Yamamura, K., & Kiritani, K. (1998). A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl. Entomol. Zool. 33, 289-298.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Zonas Áridas