Revista Chapingo Serie Zonas Áridas
Thermal and microstructural properties of cuticle hydrophobic compounds from four species of Opuntia
ISSNe: 2007-526X
PDF

Keywords

Epicuticular waxes
Scanning Electron Microscopy
Differential Scanning Calorimetry
melting temperature

How to Cite

López-Avila, K. P., Rendón-Huerta, J. A., Morales-Rueda, J. A., & Pérez-Martínez, J. D. (2020). Thermal and microstructural properties of cuticle hydrophobic compounds from four species of Opuntia. Revista Chapingo Serie Zonas Áridas, 19(1), 17–27. https://doi.org/10.5154/r.rchsza.2019.09.020

Abstract

The vegetable waxes are widely used in the agri-food, cosmetic and pharmaceutical industries. Epicuticular wax of Opuntia spp could be a new alternative able to satisfy industrial needs. The objective of this research is to characterize the thermal and structural properties of cuticle hydrophobic compounds from four species of Opuntia [O. robusta Wendl, O. leucotricha DC., O. streptacantha Lem. and O. ficus-indica (L.) Mill]. The content of hydrophobic compounds was determined by Soxhlet. The melting and crystallization profiles of the extracts were obtained by differential scanning calorimetry (DSC). The microstructure of the cuticle surface was observed by Scanning Electron Microscopy and the crystalline characteristics of the extracts were observed using Polarized Light Microscopy. Results showed that O. streptacantha contains both the highest concentration of hydrophobic compounds (3.97 %) and the melting temperature (78.25 °C). In addition, O. Streptacantha showed the highest quantity of hydrophobic compounds on the surface of the cladode with small crystals of colloidal dimensions and irregular plate-like form. Therefore, the four involved Opuntia species,especially O. streptacantha, contain hydrophobic compounds with thermal characteristics like high value-added vegetable waxes.

https://doi.org/10.5154/r.rchsza.2019.09.020
PDF

References

Arreola-Nava, H. J., Cuevas-Guzmán, R., Guzmán-Hernández, L., & González-Durán, A. (2017). Opuntia setocarpa, a new species of nopal from Western Mexico. Revista Mexicana de Biodiversidad.88 (4). 792-797. https://doi.org/10.1016/j.rmb.2017.10.028

Association of Official Analytical Chemists (AOAC). (1995). Official Methods of Analysis (15th ed.). Arlington, VA. USA.

Ben Salem-Fnayou, A., Zemni, H., Nefzaoui, A., & Ghorbel A. (2013). Micromorphology of Cactus-Pear (Opuntia ficus-indica (L.) Mill) Cladodes Based on Scanning Microscopies. Micron 56. 68-72. doi: https://doi.org/10.1016/j.micron.2013.10.010

Blake, A. I ,, Co, E., & Marangoni, A. G. (2014). Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. Journal of American Oil Chemestry Society, 91, 885-903. doi. https://doi.org/10.1007/s11746-014-2435-0

Blake, A. I., Toro-Vazquez, J. F., & Hwang, H. S. (2018). Wax oleogles. In A. Marangoni & N. Garti (Eds), Edible Oleogels: Structure and Healt Implications (2d ed., pp.133-167). London: AOCS press.

Cabello, A. C. J., Sáenz, G. A., Barajas, B. L., Pérez, B. C., Ávila, O. C., & Valdés, G. J.A. (2013). Cera de Candelilla y sus aplicaciones. Avances en Química, 8(2), 105-110.

Cervantes, R. M. C. (2002). Plantas productoras de ceras. In R. M. C. Cervantes (Ed.), Plantas de importancia económica en las zonas áridas y semiáridas de México. (pp. 125-137). México, D. F. ISBN: 970-32-0182-02

Co, E. D., & Marangoni, A. G. (2012). Organogels: An Alternative Edible Oil-Structuring Method. Journal of American Oil Chemestry Society, 89, 749–780. doi: https://doi.org/10.1007/s11746-012-2049-3

Dassanayake, L. S. K., Kodali, D. R., & Ueno, S. (2011). Formation of Oleogels Based on Edible Lipid Materials. Current Opinion in Colloid & Interface Science, 16(5), 432-439. doi: https://doi.org/10.1016/j.cocis.2011.05.005

de Freitas, C. A. S, de Sousa, P. H. M., Soares, D. J., da Silva, J. Y. G., Benjamin, S. R., & Guedes, M. I. F. (2019). Carnauba wax uses in food – A review. Food Chemistry,291, 38–48. https://doi.org/10.1016/j.foodchem.2019.03.133

Jana, S., & Martini, S. (2016). Physical characterization of crystalline networks formed by binary blends of waxes in soybean oil. Food Research International,89, 245–253. doi: https://doi.org/10.1016/j.foodres.2016.08.003

Morales-Rueda, J. A., Dibildox-Alvarado, E., Charó-Alonso, M. A., Weiss, R. G., & Toro-Vazquez, J. F. (2009). Thermo-mechanical properties of candelilla wax and dotriacontane organogels in safflower oil. European Journal of Lipid Science and Technology, 111, 207–215. doi: https://doi.org/10.1002/ejlt.200810174

Rojas, M. R., Saucedo P. S., De León, Z. M. A., Jasso, C. D., & Aguilar, C.N. (2011). Ensayo: Pasado, Presente y Futuro de la Candelilla. Revista Mexicana de Ciencias Forestales, 2(6). 7-18.

Rojas-Molina, R., De León-Zapata, M. A., Saucedo-Pompa, S., Aguilar-González, M. A., & Aguilar, C. N. (2013). Chemical and Structural Characterization of Candelilla (Euphorbia antisypilitica Zucc.). Journal of Medicinal Plants Research7(12), 702-705. doi: https://doi.org/10.5897/JMPR11.321

RStudio, PBC (2017). GNU Affero General Public License version 3 (AGPL v.3). Boston, MA. USA Rykaczewski, K., Jordan, J. S., Linder, R., Woods, E. T., Sun, X., Kemme, N.,…,& Majure L. C. (2016). Microscale mechanism of age dependent wetting properties of Prickly Pear Cacti (Opuntia). Langmuir, 32, 9335−9341. doi: https://doi.org/10.1021/acs.langmuir.6b02173

Rzedowski, J. (2006). Matorral xerófilo. In J. Rzedowski (Ed.), Vegetación de México (1a. Edición digital, pp. 247-243). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México.

Sánchez-Becerril, M., Maragoni, A. G., Perea-Flores, M. J., Cayetano-Castro, N., Martínez-Gutiérrez, H., Andraca-Adame, J. A. & Pérez-Martínez, J. D. (2018). Characterization of the Micro and Nanostructure of the Candelilla Wax Organogels Crystal Networks. Food Structure, 16, 1-7. doi: https://doi.org/10.1016/j.foostr.2018.02.001

Serrato-Palacios, L. L., Toro-Vazquez, J. F., Dibildox-Alvarado, E., Aragón-Piña, A., Morales-Armenta, M. R., IbarraJunquera, V., & Pérez-Martínez, J. D. (2015). Phase Behavior and Structure of Systems Based on Mixtures of n-Hentriacontane and Melissic Acid. Journal of American Oil Chemestry Society, 92(4), 533-540. doi: https://doi.org/10.1016/j.foodres.2016.10.025

Shepherd, T., & Griffiths, D.W. (2006). The effects of stress on plant cuticular waxes. New Phytologist, 171, 469–499. doi : https://doi.org/10.1111/j.1469-8137.2006.01826.x

Toro-Vazquez, J. F., Morales-Rueda, J. A., Dibildox-Alvarado, E., Charo-Alonso, M., Alonzo-Macias, M., & GonzálezChávez, M. M. (2007). Thermal and textural properties of organogels developed by candelilla wax in safflower oil. Journal of American Oil Chemestry Society, 84, 989–1000. doi: https://doi.org/10.1007/s11746-007-1139-0

Toro-Vazquez, J. F., Mauricio-Pérez, R., González-Chávez, M. M., Sánchez-Becerril, M, Ornelas-Paz, J. J., & Pérez-Martínez, J. D. (2013). Physical properties of organogels and water in oil emulsions structured by mixtures of candelilla wax and monoglycerides. Food Research International 54, 1360–1368. https://doi.org/10.1016/j.foodres.2013.09.046

Wilkinson, R. E., & Mayeux, H. E. Jr. (1990). Composition of epicuticular wax on Opuntia engelmannii. Botanical Gazette, 151 (3), 342-347. Obtenido de http://www.jstor.org/stable/2995405

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Zonas Áridas