Revista Chapingo Serie Zonas Áridas
Physical properties and microscopic structure of the Agave salmiana cuticle (mixiote)
ISSNe: 2007-526X
PDF

Keywords

Cuticle
permeability
stomatal density

How to Cite

Vargas-Rodríguez, L., García-Vieyra, . M. I., León-Bata, B. I., & Lozano-Sotomayor, P. (2018). Physical properties and microscopic structure of the Agave salmiana cuticle (mixiote). Revista Chapingo Serie Zonas Áridas, 17(2), 1–9. https://doi.org/10.5154/r.rchsza.2017.12.017

Abstract

The objectives of this study were to describe the structure of the mixiotera leaves or agave cuticles, as well as their water permeability and sterilization resistance. For this, fresh cuticles from Agave salmiana leaves (thickness = 0.114 mm, density = 7.2 mg∙cm-2) were analyzed by means of Scanning Electron Microscopy. The images revealed tetracytic-type stomata averaging 30-52 μm in length and 64 stomata mm-2 in density. The water permeability of the cuticle shows a linear behavior. Water diffusion through the cuticle is greater from the outer side than from the inner one. It was observed that the A. salmiana cuticle is a material that withstands moist heat when sterilized under pressure conditions (121 °C and 15 lb in-2 for 15 min). Results suggest that the A. salmiana cuticle has wide-ranging potential for industrial use.

https://doi.org/10.5154/r.rchsza.2017.12.017
PDF

References

Bernardino-Nicanor, A., Mora-Escobedo, R., Montañez-Soto, J. L., Filardo-Kerstupp, S., & González-Cruz, L. (2012). Microstructural differences in Agave atrovirens Karw leaves and pine by age effect. African Journal of Agricultural Research, 7(24), 3550-3559. doi: https://doi.org/10.5897/AJAR11.1185.

Bessire, M., Chassot, C., Jacquat, A. C., Humphry, M., Borel, S., MacDonald-Comber Petétot, J.,... & Nawrath, C. (2007). A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinereal. The EMBO Journal, 26(8), 2158-2168. doi: https://doi.org/10.1038/sj.emboj.7601658.

Chatterjee, S., Sarkar, S., Oktawiec, J., Mao, Z., Niitsoo, O., & Stark, R. E. (2012). Isolation and biophysical study of fruit Cuticles. J. Vis. Exp. (61), e3529. doi: https://doi.org/10.3791/3529.

Domínguez, E., Heredia-Guerrero, J. A., & Heredia, A. (2011). The biophysical design of plant cuticles: an overview. New Phytologist, 189, 938-949. doi:10.1111/j.1469-8137.2010.03553.X.

Heredia, A. (2003). Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. Biochimica et Biophysica Acta (BBA)-General Subjects, 1620(1-3), 1-7. doi: https://doi.org/10.1016/S0304-4165(02)00510-X.

Kunst, L., Jetter, R., & Samuels, A. L. (2008). Biosynthesis and transport of plant cuticular waxes. Annual Plant Reviews, 23, 182-255. doi: https://doi.org/10.1002/9780470988718.ch5

Nobel, P. S. (1994). Remarkable Agaves and Cacti. Oxford University Press, Oxford.

Reina-Pinto, J. J., & Yephremov, A. (2009). Surface lipids and plant defenses. Plant Physiology and Biochemistry, 47(6), 540-549. doi: https://doi.org/10.1016/j.plaphy.2009.01.004.

Suh, M. Ch., Samuels, A. L., Jetter, R., Kunst, L., Pollard, M., Ohlrogge, J., & Beisson, F. (2005). Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiology, 139(4), 1649-1665. doi: https://doi.org/10.1104/pp.105.070805.

Taiz, L., & Zeiger, E. (2006). Fisiología Vegetal. Universitat Jaume. Vol. 10. Ciencias Experimentales, 1338 pp, ISBN 8480216018, 9788480216012.

Trejo, V., Aragón, N., & Miranda, P. (2001). Estimación de la permeabilidad al vapor de agua en películas a base de quitosán. Revista de la Sociedad Química de México, 45(1), 01-05.

Vargas-Rodríguez, L., Pérez-Nieto, A., Arroyo-Figueroa, G., Gallegos-Álvarez, M.M., & Flores-Rodríguez, E. (2017). Cuticle of prickly pear: structure and biological function. XXVI International Materials Research Congress, August 20-25, Cancún, Mexico.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2018 Revista Chapingo Serie Zonas Áridas