Revista Chapingo Serie Zonas Áridas
Osmotic stress and germination of Yucca elata and Menodora scabra, two species of plants native to the desert of Chihuahua
ISSNe: 2007-526X
rchszaV16n1
PDF

Keywords

Mannitol
germination
native plants
propagation
arid areas

How to Cite

Prado-Tarango, D. E. ., Melgoza-Castillo, A., Mata-González, R., & Villarreal-Guerrero, . F. (2017). Osmotic stress and germination of Yucca elata and Menodora scabra, two species of plants native to the desert of Chihuahua. Revista Chapingo Serie Zonas Áridas, 16(1), 39–44. https://doi.org/10.5154/r.rchsza.2017.01.002

Abstract

Plant propagation is essential for the restoration of degraded ecosystems. Arid areas sustain some drought tolerant plant species such as Yucca elata (Engelm.) Engelm. and Menodora scabra A. Gray. It is widely accepted that drought can increase in intensity and frequency under the current scenario of climate change. Therefore, we conducted a germination study to test these two native plant species of the Chihuahuan desert under different levels of osmotic stress and to determine their response under different levels of drought. In both species, increasing levels of drought affected germination, but germination of Y. elata was not inhibited (13 % of germination) even at -1.5 MPa, while germination of M. scabra was inhibited (0 % germination) at this osmotic potential. These responses show germination of Y. elata is less affected by drought than germination of M. scabra. Therefore, this represents different potential alternatives of reproduction in restoration programs for these species. Whereas Y. elata may be successfully reproduced by seed under dry field conditions, M. scabra may require seedling production and field transplantation or the use of nursing plants in the field.

https://doi.org/10.5154/r.rchsza.2017.01.002
PDF

References

Al-Whaibi, M. (2009). Desert plants and mycorrhiza. Journal of Pure and Applied Microbiology, 3(2), 457-466. Obtenido de: https://goo.gl/HQkaIX.

Bajji, M., Kinet, J., & Lutts, S. (2002). Osmotic and ionic effects of NaCl on germination, early seedling growth, and ion content of Atriplex halimus (Chenopodiaceae). Canadian Journal of Botany,80(3), 297-304. doi: https://doi.org/10.1139/b02-008.

Bochet, E., García-Fayos, P., Alborch, B., & Tormo, J. (2007). Soil water availability effects on seed germination account for species segregation in semiarid roadslopes. Plant and Soil,295(1), 179-191. doi: https://doi.org/10.1007/s11104-007-9274-9.

Burton, P., & Burton, C. (2002). Promoting Genetic Diversity in the Production of Large Quantities of Native Plant Seed. Ecological Restoration,20(2), 117-123. doi: https://doi.org/10.3368/er.20.2.117.

Cavalcante, A., Braz, M., & Mattos, I. (2010). Germination biology and seedling growth of Clusia hilariana Schltdl., a dominant CAM-tree of drought-prone sandy coastal plains. Ecological Research,25(4), 781-787. doi: https://doi.org/10.1007/s11284-010-0708-0.

Comisión Técnico Consultiva para la Determinación Regional de los Coeficientes de Agostadero (COTECOCA). (1978). Estudio para el Estado de Chihuahua. Secretaría de Agricultura y Recursos Hidráulicos. México, D.F.

Contreras-Quiroz, M., Pando-Moreno, M., Flores, J., & Jurado, E. (2016). Effects of wetting and drying cycles on the germination of nine species of the Chihuahuan Desert. Botanical Sciences,94(2), 221-228. doi: https://doi.org/10.17129/botsci.457.

Daws, M., Crabtree, L., Dalling, J., Mullins, C., & Burslem, D. (2008). Germination responses to water potential in neotropical pioneers suggest large-seeded species take more risks. Annals of Botany,102(6), 945-51. doi: https://doi.org/10.1093/aob/mcn186.

Esqueda, M. H., Melgoza, A., Sosa, M., Carrillo, R., & Jiménez, J. (2005). Emergencia y sobrevivencia de gramíneas con diferentes secuencias de humedad-sequía en tres tipos de suelo. Técnica Pecuaria México, 43(1), 101-115. Obtenido de: https://goo.gl/QqqTou.

Flores, J., & Briones, O. (2001). Plant life-form and germination in a Mexican inter-tropical desert: Effects of soil water potential and temperature. Journal of Arid Environments,47(4), 485-497. doi: https://doi.org/10.1006/jare.2000.0728.

Fulbright, T., & Flenniken, K. (1986). Effects of Temperature and Presowing Treatments on Showy Menodora Seed Germination. Journal of Range Management,39(4), 310 -313. doi: https://doi.org/10.2307/3899769.

Hu, X., Zhou, W., Li, Z., Wu, Q., & Wang, T. (2013). Environmental factors controlling seed germination and seedling recruitment of Stipa bungeana on the Loess Plateau of northwestern China. Ecological Research,28(5), 801-809. doi: https://doi.org/10.1007/s11284-013-1063-8.

Jankju, M. (2013). Role of nurse shrubs in restoration of an arid rangeland: Effects of microclimate on grass establishment. Journal of Arid Environments,89, 103-109. doi: https://doi.org/10.1016/j.jaridenv.2012.09.008.

Jiménez-Aguilar, A., & Flores, J. (2010). Effect of light on seed germination of succulent species from the southern Chihuahuan Desert: comparing germinability and relative light germination. Journal of the Professional Association for Cactus Development, 12, 12-19.

Kermode, A. (2011). Seed dormancy: Methods and protocols(Springer protocols (Series)). New York: Humana Press.

Leon, M., Squeo, F., Gutiérrez, J., & Holmgren, M. (2011). Rapid root extension during water pulses enhances establishment of shrub seedlings in the Atacama Desert. Journal Of Vegetation Science,22(1), 120 -129. doi: http://dx.doi.org/10.1111/j.1654-1103.2010.01224.x.

Luna, T. (2007). Propagation protocol for rock evening primrose (Oenothera caespitosa Nutt.). Native Plants Journal,8(1), 40 -41. Obtenido de: https://goo.gl/qXcbPB.

Mandák, B., & Pyšek, P. (2001). The effects of light quality, nitrate concentration and presence of bracteoles on germination of different fruit types in the heterocarpous Atriplex sagittata. Journal of Ecology,89(2), 149-158. doi: http://dx.doi.org/10.1046.

Mata-Gonzalez, R., Abdallah, M. A. B., Trejo-Calzada, R., & Wan, C. (2017). Growth and leaf chemistry of Atriplexspecies from Northern Mexico as affected by salt stress. Arid Land Research and Management, 31(1), 57-70. doi: https://doi.org/10.1080/15324982.2016.1199065.

Mccleary, J. (1973). Comparative Germination and Early Growth Studies of Six Species of the Genus Yucca. The American Midland Naturalist,90(2), 503-508. doi: https://doi.org/10.2307/2424480.

Melgoza, A., Morales, C. R., Sierra, J. S., Royo, M. H., Quintana, G., & Lebgue, T. (2006). Manual práctico para la identificación de las principales plantas en los agostaderos de Chihuahua. UGRCH. Chihuahua, Chih.

Melgoza, A., Ortega, C., Morales, C., Jurado, P., Vélez, C., Royo, M., Quintana, G., Lafón, A., & Alarcón M. (2007). Propagación de plantas nativas para la recuperación de áreas degradadas: Opción para mejorar ecosistemas. Tecnociencia, 1(3), 38-41. Obtenido de: https://goo.gl/TjGNpV.

Méndez, M., Dorantes, A., Dzib, G., Argáez, J., & Durán, R. (2006) Germinación y establecimiento de plántulas de Pterocereus gaumeri, una cactácea columnar, rara y endémica de Yucatán, México. Boletín de la Sociedad Botánica de México, 79, 33-41. Obtenido de: https://goo.gl/CYl4XT.

Montalvo, A., McMillan, P., & Allen, E. (2002). The Relative Importance of Seeding Method, Soil Ripping, and Soil Variables on Seeding Success. Restoration Ecology,10(1), 52-67. doi: http://dx.doi.org/10.1046.

Padilla, F., & Pugnaire, F. (2006). The role of nurse plants in the restoration of degraded environments. Frontiers in Ecology and the Environment,4(4), 196-202. doi: https://doi.org/10.1890/1540-9295(2006)004[0196:TRONPI]2.0.CO;2

Petersen, S., Roundy, B., & Bryant, R. (2004). Revegetation Methods for High‐Elevation Roadsides at Bryce Canyon National Park, Utah. Restoration Ecology,12(2), 248-257. doi: http://dx.doi.org/10.1111/j.1061-2971.2004.00321.x.

Pinedo, C., Hernández, N., Melgoza, A., Villalobos, M., Morales, C., & Vélez, C. (2013). La sequía y su impacto en la ganadería del estado de Chihuahua. Boletín de divulgación 1 Facultad de Zootecnia y Ecología. Chihuahua, Chih.

Poorter, H., & Remkes, C. (1990). Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia,83(4), 553-559. doi: https://doi.org/10.1007/BF00317209.

Ramírez-Tobías, H., Peña-Valdivia, C., Trejo, C., Aguirre R, J., & Vaquera H, H. (2014). Seed germination of Agave species as inf luenced by substrate water potential. Biological Research,47, 11. doi: https://doi.org/10.1186/0717-6287-47-11.

Romero-Méndez, U., Figueroa, R., Berumen, S., Martínez-Ríos, J. & García, M. (2013). Notas sobre la germinación de la semilla de Astrophytum myriostigma Lem. (1839): una revisión bibliográfica. Agrofaz, 13(1), 81-85. Obtenido de: https://goo.gl/YMd7j8.

Sabo, D., Johnson, Gordon V, Martin, William, C, Aldon, Earl, F., United States. Department of Agriculture, & Rocky Mountain Forest Range Experiment Station. (1979). Germination requirements of 19 species of arid land plants(Research paper RM; 210). Fort Collins, Colo.: Rocky Mountain Forest and Range Experiment Station, Forest Service, U.S. Dept. of Agriculture.

Sevik, H., & Cetin, M. (2015). Effects of Water Stress on Seed Germination for Select Landscape Plants. Polish Journal Of Environmental Studies,24(2), 689-693. doi: https://doi.org/10.15244/pjoes/30119.

Shanjani, P., Izadpanah, M., & Mohamadpour, M. (2013). Effects of water stress on germination of yarrow populations (Achillea Spp.) from different bioclimatic zones in Iran. Plant Breeding and Seed Science, 68, 39-54. doi: https://doi.org/10.2478/v10129-011-0079-x.

Smith, S., Riley, E., Tiss, J., & Fendenheim, D. (2000). Geographical variation in predictive seedling emergence in a perennial desert grass. Journal of Ecology,88(1), 139-149. doi: http://dx.doi.org/10.1046.

Syvertsen, J. P., Nickell, G. L., Spellenberg, R. W., & Cunningham, G. L. (1976). Carbon Reduction Pathways and Standing Crop in Three Chihuahuan Desert Plant Communities. The Southwestern Naturalist,21(3), 311-320. doi: https://doi.org/10.2307/3669716.

Tielbörger, K., & Prasse, R. (2009). Do seeds sense each other? Testing for density‐dependent germination in desert perennial plants. Oikos,118(5), 792-800. doi: http://d x.doi.org/10.1111/j.1600-0706.2008.17175.x.

Tilki, F. (2005). Seed germination and radicle development in six provenances of Pinus sylvestris L. under water stress. Israel Journal of Plant Sciences,53(1), 29-33. doi: https://doi.org/10.1560/0NQF-3CKU-BLDD-JWE4.

Torabi, S., & Niknam, V. (2011). Effects of Iso-osmotic Concentrations of NaCl and Mannitol on some Metabolic Activity in Calluses of Two Salicornia species. In Vitro Cellular & Developmental Biology - Plant,47(6), 734-742. doi: https://doi.org/10.1007/s11627-011-9371-6.

Verdú, M., & Traveset, A. (2005). Early emergence enhances plant fitness: a phylogenetically controlled meta-analysis. Ecology,86(6), 1385-1394. doi: https://doi.org/10.1890/04-1647.

Walker, L., Thompson, D., & Landau, F. (2001). Experimental manipulations of fertile islands and nurse plant effects in the Mojave Desert, USA. Western North American Naturalist,61(1), 25-35. Obtenido de: https://goo.gl/t0tFJJ.

Wang, Lijuan, Zhao, Chengyi, Li, Jun, Liu, Zhihui, & Wang, Jianghong. (2015). Root plasticity of Populus euphraticaseedlings in response to different water table depths and contrasting sediment types. PLoS ONE,10(3). doi: : https://doi.org/10.1371/journal.pone.0118691.

Windauer, L. B., Martinez, J., Rapoport, D., Wassner, D., & Benech-Arnold, R. (2012). Germination responses to temperature and water potential in Jatropha curcasseeds: A hydrotime model explains the difference between dormancy expression and dormancy induction at different incubation temperatures. Annals of Botany,109(1), 265-73. doi: https://doi.org/10.1093/aob/mcr242.

Zandi, E., & Azarnivand, H. (2013). Effect of water stress on seed germination of Agropyron Elongatum, Agropyron Desertorum & Secale Montanum. Desert Journal, 17(3), 249-253.Obtenido de: https://goo.gl/gmRmZO.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2017 Revista Chapingo Serie Zonas Áridas