Revista Chapingo Serie Zonas Áridas
Mycorrhizal symbiosis and growth of sorghum plants irrigated with saline water
ISSNe: 2007-526X
PDF

Keywords

Sorghum bicolor
fungi
mycorrhizal
arbuscular

How to Cite

Díaz-Franco, A., Ortiz-Cháirez, F. E., & Espinosa-Ramírez, M. (2016). Mycorrhizal symbiosis and growth of sorghum plants irrigated with saline water. Revista Chapingo Serie Zonas Áridas, 15(1), 55–65. https://doi.org/10.5154/r.rchsza.2016.01.001

Abstract

Irrigating crops with saline water induces adverse effects on productivity and causes deterioration of agricultural soils. NaCl is the most important toxic salt that induces ionic and osmotic stress in plants. Consequently, plants require a greater effort to absorb water, which affects their growth. A study was conducted in a greenhouse to determine the symbiotic effects of arbuscular mycorrhizal fungi (AMF) Burize ST® and Micorriza INIFAP® (Rhizophagus intraradices) on sorghum hybrids ‘Norteño’ and ‘Gstar 7609,’ subjected to irrigation with three levels of saline water (desalinated, medium and high, EC = 0.03, 2.30 and 4.54 dS·m-1, respectively). Variables measured were chlorophyll (SPAD), plant height, stem diameter, shoot and root biomass, and mycorrhizal colonization. Except for colonization, which was not influenced by the water’s salinity level, the values of the other variables decreased as the salt concentration in the water increased. The results indicated that, in general, higher growth and biomass yield were obtainedin sorghum plants by the symbiotic association between the AMF Micorriza INIFAP and the sorghum ‘Norteño’ at the three salinity levels in the irrigation water.

https://doi.org/10.5154/r.rchsza.2016.01.001
PDF

References

Al-Karaki, G. N. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Science Horticulture, 109, 1-7.

Al-Karaki, G. N., Hammad, R., & Rusan, M. (2001). Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza, 11, 43-47.

Al-Karaki, G. N., McMichael, B., & Zak, J. (2004). Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza, 14, 263-269.

Carpio, A. L., Davies, F. T., & Arnold, M.A. (2005). Arbuscular mycorrhizal fungi, organic and inorganic fertilizers: effect on growth and leachate of container-grown bush morning glory (Ipomoea carnea ssp. fistulosa) under high production temperatures. Journal of American Society Horticulture Science, 130, 131-139.

Chinnusamy, V., Jagendorf, A., & Zhu, J. K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45, 473-448.

Cho, K., Toler, H., Lee, J., Ownley, B., Stutz, J. C., Moore, J. L., & Augé, R. M. (2006). Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. Journal Plant Physiology, 106, 517-528.

Díaz, F. A., Alvarado, C. M., Ortiz, C. F., & Grageda, C. O. (2013). Nutrición de la planta y calidad de fruto de pimiento asociado con micorriza arbuscular en invernadero. Revista Mexicana de Ciencias Agrícolas, 4, 315-321.

Díaz, F. A., Ortiz, C. F., Lozano, C. M., Aguado, S. G., & Grageda, C.O. (2012) . Growth, mineral absorption and yield of maize inoculated with microbe strains. African Journal Agriculture Research, 28, 3764-3769.

Dodd, K., Guppy, C., Lockwood, P., & Rochester, I. (2010). The effect of sodicity on cotton: plant response to solutions containing high sodium concentrations. Plant and Soil, 330, 239-249.

Feng, G., Zhang, F. S., Li, X. L., Tian, C. Y., Tang, C., & Rangel, Z. (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza in related to higher accumulation of soluble sugars in roots. Mycorrhiza, 12, 185 -190.

Fernández, I., Morelos, M., López, R. J., Martínez, M. A., Ferrol, N., Azcón, C., Bonfante, P., Flors, V., & Pozo, M. J. (2014). Defense related phytohormones regulation in arbuscular mycorrhizal symbioses depends on the partner genotypes. Journal of Chemical Ecology. doi https://doi.org/10.1007/s10886-014-0473-6.

Ferrera-Cerrato R., & Alarcón, A. (2008). Biotecnología de los hongos micorrízicos arbusculares. En: Díaz F.A.; Mayek P.N. (eds) .La Biofertilización como Tecnología Sostenible. Plaza y Valdés/CONACYT. pp: 25-38.

Ghanbar, L., Khajehzadeh, M. H., Afshari, H., Ghaffar, A.E., & Abbaspour, H. (2011). Effect of mycorrhiza symbiosis on the NaCl salinity in Sorghum bicolor. African Journal of Biotechnology, 10, 7796-7804.

Giri, B., & Mukerji, K. G., (2004). Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptica and S.grandif lora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 14, 307-312.

Hajiboland, R. (2013). Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad P. (ed.). Salt Stress in Plants: Signaling, Omics and Adaptations. Springer Science Media. 301-337.

Harris, V. C., Esqueda, M., Valenzuela, S. E., & Castellanos A. (2011). Tolerancia a sequía y salinidad en Cucurbita pepo var. pepo asociada con hongos micorrízicos arbusculares del desierto Sonorense. Agrociencia, 45, 959-970.

Heikham, E., Kapoor, R., & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany, 104, 1263-1280.

Jindal, V., Atwal A., Selchon, B. S., & Rattan, S. (1993). Effect of vesicular-arbuscular mycorrhizae on metabolism of mungbean plants under NaCl salinity. Plant Physiology and Biochemistry, 31, 475-481.

Mansour, M. M., & Salama, K. H. (2000). Cellular basis of salinity tolerance in plants. Environment and Experimental of Botany, 52, 113-122.

Martínez, V. N., López, A. C., Basurto, S. M., & Pérez, L. R. (2011). Efectos por salinidad en el desarrollo vegetativo. Tecnociencia, 3, 156-161.

McGonigle, T. P., & Fitter, A. H. (1990). Ecological specificity of vesicular-arbuscular mycorrhizal associations. Mycological Research, 94, 120-122.

Phillips, J., & Hayman, D. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of Britany Mycological Society, 55, 158-161.

Pecina, Q. V., Díaz, F. A., & Garza, C. I. (2008). Respuesta del maíz y sorgo a la fertilización biológica. En: Díaz F.A.; Mayek P.N. (eds). La Biofertilización como Tecnología Sostenible. Plaza y Valdés/CONACYT. 208-211.

Plenecassangne, A., Romero, F. E., & López, B. C. (1999). Manual de laboratorio para análisis de suelo, planta y agua. Instituto nacional de Investigaciones Agrícolas y Pecuarias. Gómez Palacio Durango, México. 236.

Rabie, G. H. (2005). Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza, 15, 225-230.

Ruiz-Lozano, J., & Aroca, R. (2010). Host response to osmotic stresses: Stomatal behavior and water use efficiency of arbuscular mycorrhizal plants. In: Koltai H.; Kapulnik Y. (eds.). Arbuscular Mycorrhiza: Physiology and Function. Springer Science Media. 239-259.

Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F., & Huang Y. (2008). Inf luence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18, 287-296.

Smith, G. S., & Read, D. J. (2008). Mycorrhizal Symbiosis. 3nd ed. Academic Press. London. 750.

Tian, C. Y., Feng, G., Li, X. L., & Zhang, F. S. (2004). Different effects of arbuscular mycorrhizal fungal isolates from saline or no-saline soil on salinity tolerance of plants. Applied Soil Ecology, 26, 143-148.

Villa, C. M., Catalán, V. E., & Inzunza, I. M. (2006). Absorción y translocación de sodio y cloro en plantas de chile fertilizadas con nitrógeno y crecidas en estrés salino. Revista Fitotecnia Mexicana, 29, 79-88.

Zahir, Z. A., Asghar, H. N., & Arshad, M. (2001). Cytokinin and its precursors for improving growth and yield of rice. Soil Biochemistry, 33, 05-408.

Zhu, J. K. (2001). Plant salt tolerance. Trends Plant Science, 6, 66-71.Zuccarini, P. (2007). Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil and Environment, 53, 283-289.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Revista Chapingo Serie Zonas Áridas