Revista Chapingo Serie Zonas Áridas
Germinación de semillas de especies de plantas de zonas semiáridas bajo tratamientos de hidratación–deshidratación
ISSNe: 2007-526X
rchszaV14n1
PDF

Palabras clave

Adaptación
velocidad de germinación
tratamientos pregerminativos
ambientes áridos

Cómo citar

Contreras Quiroz, M. del R., Pando Moreno, M., & Jurado, E. (2015). Germinación de semillas de especies de plantas de zonas semiáridas bajo tratamientos de hidratación–deshidratación. Revista Chapingo Serie Zonas Áridas, 14(1), 41–50. https://doi.org/10.5154/r.rchsza.2015.03.002

Resumen

Diversos autores han estudiado la inf luencia de los tratamientos de hidratación-deshidratación (HD) sobre la germinación de algunas especies vegetales. Ciertas semillas conservan una “memoria de hidratación” al retener, durante la deshidratación, los cambios fisiológicos producidos durante la hidratación. La hipótesis es que las semillas de especies del desierto tendrán mayor porcentaje de germinación y menor tiempo medio de germinación después de ser sometidas a tratamientos de hidratación y deshidratación. El objetivo de este estudio fue evaluar cinco especies de plantas: (Frankenia gypsophila (I.M. Johnst.), Muhlenbergia arenicola (Buckl.), Muhlenbergia villif lora (Hitch.), Senna demissa (Rose) y Aristida adscencionis L.), las cuales fueron sometidas a los siguientes tratamientos de HD: T1= 8h·día-1, T2= 8h·día-1 + 8h·día-1 + 8h·día-1, T3= 24h·día-1 y T4= testigo. Los tratamientos de HD aplicados a las cinco especies no promovieron el aumento en el porcentaje de germinación. Los ciclos de hidratación-deshidratación incrementaron la velocidad de germinación y disminuyeron el tiempo medio de germinación (t50) de semillas de F. gypsophila, S. demissa y M. arenicola lo que podría interpretarse como una de las adaptaciones de estas semillas a los intervalos de lluvias y sequías que se presentan en las zonas áridas y semiáridas.

https://doi.org/10.5154/r.rchsza.2015.03.002
PDF

Citas

Adams, R. 1999. Germination of Callitris seeds in relation to temperature, water stress, priming, and hydration–dehydration cycles. Journal of Arid Environments, 43 (4), 437–448. Obtenido de http://www.sciencedirect.com/science/article/pii/S0140196399905670

Allen, P. S.; White, D. B.; Markhart III, A. H. 1993. Germination of perennial ryegrass and annual bluegrass seeds subject to hydration-dehydration cycles. Crop Science, 33, 1020 -1025.doi: https://doi.org/10.2135/cropsci1993.0011183X003300050029x

Baskin, J. M.; Baskin, C. C. 1972. The light factor in the germination ecology of Drabaverna. American Journal of Botany, 59, 756-759. Obtenido de http://www.jstor.org/discover/10.2307/2441148?sid=21105405598711&uid=2&uid=3738664&uid=4&uid=2134&uid=70

Baskin, C. C.; Chesson, P. L.; Baskin, J. M. 1993. Effects of moisture and temperature, and time on seed germination of five wetland Carices: implications for restoration. Restoration Ecology, 7(1), 86-97. doi: https://doi.org/10.1046/j.1526-100X.1999.07110.x

Bewley, J. D.; Black, M. 1985. Seeds: Physiology of Development and Germination. New York, EUA: Plenum Press. Obtenido de http://libgen.org/book/index.php?md5=e39e721ec5cadd7eda3217d64f879edd

Black, M.; Bewley, D.; Halmer, P. 2006. The Encyclopedia of Seeds: Science, Technology and Uses. Cromwell Press, Trowbidge: CABI International. Obtenido de http://books.google.com.mx/books?id=W6EbrewcpDwC&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

CONAGUA. 2014. Estaciones Meteorológicas San Rafael y Estación San José de Raíces. Consultado 19/11/2014 en http://smn.cna.gob.mx/climatología/normales/estacion/catalogos/cat_nl.html

Díaz, L. Z. 1993. Observaciones sobre el comportamiento en la germinación de las semillas de Asphodelus L. (Asphodelaseae). Lagascalia, 17(2), 329-352. Obtenido de http://institucional.us.es/revistas/lagascalia/17.2/09%20diaz%20lifante.pdf

Dubrovsky, J. G. 1996. Seed hydration memory in Sonoran Desert Cacti and its ecological implication. American Journal of Botany, 83, 624-632. Obtenido de http://www.jstor.org/stable/2445922

Escudero, A.; Carnes, L. F.; Pérez-García, F. 1997.Seed germination of gypsophytes and gypsovags in semi-arid central Spain. Journal of Arid Environments, 36, 487-497. doi: https://doi.org/10.1006/jare.1996.0215

Estrada-Castillón, E.; Scott-Morales, L.; Villarreal-Quintanilla, J. A.; Jurado-Ybarra, E.; Cotera-Correa, M.; Cantú-Ayala, C.; García-Pérez, J. 2010. Clasificación de los pastizales halófitos del noreste de México asociados con perrito de las praderas (Cynomys mexicanus): diversidad y endemismo de especies. Revista Mexicana de Biodiversidad, 80, 401-416. Obtenido de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-34532010000200014

Evenari, M. 1985. Adaptations of plants and animals to the desert environment. InM. Evenari, I. Noy-Meir & D. W. Goodall (Eds.), Ecosystems of the world: Hot deserts and arid shrublands(pp. 79-92). Amsterdam: Elsevier. Obtenido de http://www.cabdirect.org/abstracts/19861903972.html;jsessionid=2AD71EBB098146E4C6DBD17048BACE3A

Fenner, M.; Thompson, K. 2005. The Ecology of Seeds. Cambridge University Press, New York. doi: http://dx.doi.org/10.1017/CBO9780511614101

Gutterman, Y. 1993. Seed germination in desert plants. New York, EUA: Springer Berlin-Heidelberg. Obtenido de http://libgen.org/book/index.php?md5=13b62333d4fb4f162cbc5d0325173dbf

Gutterman, Y. 1994. Strategies of seed dispersal and germination in plants inhabiting deserts.The Botanical Review, 4, 403-405. Obtenido de http://link.springer.com/article/10.1007/BF02857924

Huang, Z. Y.; Gutterman, Y. 1999. Comparision of germination strategies of Artemisa ordosica with its two congeners from deserts of China and Israel. Acta Botanica Sinica, 42, 71-80. Obtenido de http://europepmc.org/abstract/cba/334872

Jurado, E.; Westoby, M. 1992. Germination biology of selected Central Australian plants. Australian Journal of Ecology, 17(3), 341-348. doi: https://doi.org/10.1111/j.1442-9993.1992.tb00816.x

Kagaya, M.; Tani, T.; Kachi, N. 2005. Effect of hydration and dehydration cycles on seed germination of Aster kantoensis (Compositae). Canadian Journal of Botany, 83,329-334. doi: https://doi.org/10.1139/b05-006

López-Urrutia, E.; Martínez-García, M.; Monsalvo-Reyes, A.; Salazar-Rojas, V.; Montoya R.; Campos J. E. 2014. Differential RNA-and protein-expression profiles of cactus seeds capable of hydration memory. Seed Science Research, 24, 91-99.doi: http://dx.doi.org/10.1017/S0960258513000317

Montejo, V. L.; Sánchez, R. J.; Muñoz, G. B. 2000. Efecto de los tratamientos pregerminativos de hidratación-deshidratación sobre la germinación de dos variedades de tomate. Acta Botánica Cubana, 178, 30-35. Obtenido de http://mst.ama.cu/483/1/ABC%20178-23-25-2003.pdf

Nonogaki, H.; Bassel, G. W.; Bewley, J. D. 2010. Germination-still a mystery. Plant Science, 179, 574-581.doi: https://doi.org/10.1016/j.plantsci.2010.02.010

Pablo-Pérez, M.; Lagunes-Espinoza, L. del C.;López-Upton, J.; Ramos-Juárez, J.; Aranda-Ibáñez E. 2013. Morfometría, germinación y composición mineral de semillas de Lupinus silvestres, Bioagro, 25(2), 101-108. Obtenido de http://www.scielo.org.ve/scielo.php?pid=S1316-33612013000200003&script=sci_arttext

Ren, J.; Tao, L. 2003. Effect of hydration-dehydration cycles on germination of seven Calligonum species. Journal of Arid Environments, 55, 111-122. doi: https://doi.org/10.1016/S0140-1963(02)00257-4

Rees, M. 1994. Delayed germination of seeds: a look at the effects of adult longevity, the timing of reproduction and population age/stage structure.The American Naturalist, 144, 43-64. Obtenido de http://www.jstor.org/stable/2462800

Sánchez, S. B.; García, M. E.; Terrazas, T.; Reyes, O. A. 2005. Efecto de la hidratación discontinua sobre la germinación de tres cactáceas del desierto costero de Topolobampo, Ahome, Sinaloa. Cactáceas y Suculentas Mexicanas, 50, 4-14. Obtenido de http://www.ecologia.unam.mx/laboratorios/dinamica_de_poblaciones/cacsucmex/CACTACEAS2005_1.pdf#page=4

Sánchez, J. A.; Muñoz, B. C.; Hernández, L.; Montejo, L.; Suaréz, A. G.; Torres, A. Y. 2006. Tratamientos robustecedores de semillas para mejorar la emergencia y el crecimiento de Trichospermum mexicanum, árbol tropical piñonero. Agronomía Costarricense, 30(1), 7-26. Obtenido de http://www.revistas.ucr.ac.cr/index.php/agrocost/article/view/6827

Santini, B. A.; Martorell, C. 2013. Does retained-seed priming drive the evolution of serotiny in drylands? An assessment using the cactus Mammillaria hernandezii. American Journal of Botany, 100, 365-373. doi: https://doi.org/10.3732/ajb.1200106

Sharma, A. D.; Rathore, SVS; Kalyani, S.; Tyagi, R. K. 2014. Comparison of various seed priming methods for seed germination, seedling vigour and fruit yield in okra (Abelmoschus esculentus L. Moench). Scientia Horticultura, 165,75 -81. doi : https://doi.org/10.1016/j.scienta.2013.10.044

Sokal, R. R.; Rohlf, F. J. 2002. Introduction to Biostatistics (2a ed.). Barcelona, España. Editorial Reverté.pp.210-211

Tao, L.; Ren J.; Liu, X. M. 2000. Study on the water-absorbing model of two Calligonum species seeds. Journal of Arid Land Resources and Environment, 14, 89 -91. doi: https://doi.org/10.1016/j.foreco.2004.01.046

Taylor, A. G.; Prusinski, J.; Hill, H. J.; Dickson, M. D. 1992. Inf luence of seed hydration on seedling performance. Hort Technology, 2, 336-344.Obtenido de http://horttech.ashspublications.org/content/2/3/336.short

Zhu, Y.; Yang, X.; Baskin, C. C.; Baskin, J. M.; Dong, M.; Huang, Z. 2014. Effects of amount and frequency of precipitation and sand burial on seed germination, seedling emergence and survival of the dune grass Leymus secalinus in semiarid China. Plant and Soil, 374, 399-409.doi: https://doi.org/10.1007/s11104 - 013-1892-9

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2015 Revista Chapingo Serie Zonas Áridas